Solveeit Logo

Question

Question: Draw a curve for showing variation in alternating current with frequency in LCR resonant circuit. He...

Draw a curve for showing variation in alternating current with frequency in LCR resonant circuit. Hence obtain an expression of bandwidth.

Explanation

Solution

In a LCR circuit, when the value of capacitive reactance is equal to the inductor reactance and impedance is equal to resistance the value of current increases suddenly. Current takes its root mean squared value at two values of frequency, these values of frequency are known as half power frequency. The bandwidth is the difference between the values of half power frequency.

Complete step-by-step solution:
An LCR circuit is a circuit which contains a resistor, capacitor as well as an inductor. At a certain frequency, the impedance becomes minimum and the current becomes maximum, this condition is called resonance and the frequency is called resonant frequency.

ω0{{\omega }_{0}} is the resonant frequency
Irms{{I}_{rms}} is the root mean square current

At resonance,
XL=XC{{X}_{L}}={{X}_{C}}
We know that,
V0Z=I\dfrac{{{V}_{0}}}{Z}=I - (1)
Here,
V0{{V}_{0}} is the potential difference
II is the current
ZZ is the impedance

At resonance, Z=RZ=R substitute in eq (1), we get,
V0R=I0\dfrac{{{V}_{0}}}{R}={{I}_{0}}
V0=I0R\Rightarrow {{V}_{0}}={{I}_{0}}R - (2)
Here,
I0{{I}_{0}} is the maximum current
RR is the resistance

When I=I02I=\dfrac{{{I}_{0}}}{\sqrt{2}} , the frequency is half power frequency ω1,ω2{{\omega }_{1}},\,{{\omega }_{2}} substitute in eq (1), we get,
V0Z=I02\dfrac{{{V}_{0}}}{Z}=\dfrac{{{I}_{0}}}{\sqrt{2}}

When we substitute eq (2) in the above equation, we get,
I0RZ=I02 Z=2R R2+((ωL)1(ωC))2=2R R2+((ωL)1(ωC))2=2R2 ((ωL)1(ωC))2=R2 \begin{aligned} & \dfrac{{{I}_{0}}R}{Z}=\dfrac{{{I}_{0}}}{\sqrt{2}} \\\ & \Rightarrow Z=\sqrt{2}R \\\ & \Rightarrow \sqrt{{{R}^{2}}+{{\left( (\omega L)-\dfrac{1}{(\omega C)} \right)}^{2}}}=\sqrt{2}R \\\ & \Rightarrow {{R}^{2}}+{{\left( (\omega L)-\dfrac{1}{(\omega C)} \right)}^{2}}=2{{R}^{2}} \\\ & \Rightarrow {{\left( (\omega L)-\dfrac{1}{(\omega C)} \right)}^{2}}={{R}^{2}} \\\ \end{aligned}

Substituting, ω=ω0+Δω\omega ={{\omega }_{0}}+\Delta \omega in the above equation, we get,
(ω0L(1+Δωω0)1ω0C(1+Δωω0))2=R2\Rightarrow {{\left( {{\omega }_{0}}L\left( 1+\dfrac{\Delta \omega }{{{\omega }_{0}}} \right)-\dfrac{1}{\omega _{0}^{{}}C\left( 1+\dfrac{\Delta \omega }{{{\omega }_{0}}} \right)} \right)}^{2}}={{R}^{2}}

The condition of resonance is,
ω0L=1ω0C C=1ω02L \begin{aligned} & {{\omega }_{0}}L=\dfrac{1}{{{\omega }_{0}}C} \\\ & \therefore C=\dfrac{1}{\omega _{0}^{2}L} \\\ \end{aligned}

When we substitute in above equation, we get,
(ω0L(1+Δωω0)ω0L(1+Δωω0))2=R2 (ω0L(1+Δωω0)ω0L(1+Δωω0))=R (ω0L(1+Δωω0)ω0L(1+Δωω0)1)=R \begin{aligned} & \Rightarrow {{\left( {{\omega }_{0}}L\left( 1+\dfrac{\Delta \omega }{{{\omega }_{0}}} \right)-\dfrac{{{\omega }_{0}}L}{\left( 1+\dfrac{\Delta \omega }{{{\omega }_{0}}} \right)} \right)}^{2}}={{R}^{2}} \\\ & \Rightarrow \left( {{\omega }_{0}}L\left( 1+\dfrac{\Delta \omega }{{{\omega }_{0}}} \right)-\dfrac{{{\omega }_{0}}L}{\left( 1+\dfrac{\Delta \omega }{{{\omega }_{0}}} \right)} \right)=R \\\ & \Rightarrow \left( {{\omega }_{0}}L\left( 1+\dfrac{\Delta \omega }{{{\omega }_{0}}} \right)-{{\omega }_{0}}L{{\left( 1+\dfrac{\Delta \omega }{{{\omega }_{0}}} \right)}^{-1}} \right)=R \\\ \end{aligned}

Applying rules of exponents, we get,
(ω0L(1+Δωω0)ω0L(1+Δωω0)1)=R (ω0L(1+Δωω0)ω0L(1Δωω0))=R 2ω0LΔωω0=R Δω=R2L \begin{aligned} & \Rightarrow \left( {{\omega }_{0}}L\left( 1+\dfrac{\Delta \omega }{{{\omega }_{0}}} \right)-{{\omega }_{0}}L{{\left( 1+\dfrac{\Delta \omega }{{{\omega }_{0}}} \right)}^{-1}} \right)=R \\\ & \Rightarrow \left( {{\omega }_{0}}L\left( 1+\dfrac{\Delta \omega }{{{\omega }_{0}}} \right)-{{\omega }_{0}}L\left( 1-\dfrac{\Delta \omega }{{{\omega }_{0}}} \right) \right)=R \\\ & \Rightarrow 2{{\omega }_{0}}L\dfrac{\Delta \omega }{{{\omega }_{0}}}=R \\\ & \therefore \Delta \omega =\dfrac{R}{2L} \\\ \end{aligned}

For bandwidth,
ω2ω1=(ω0+Δω)(ω0Δω) ω2ω1=2Δω \begin{aligned} & {{\omega }_{2}}-{{\omega }_{1}}=({{\omega }_{0}}+\Delta \omega )-({{\omega }_{0}}-\Delta \omega ) \\\ & \therefore {{\omega }_{2}}-{{\omega }_{1}}=2\Delta \omega \\\ \end{aligned}

Here, ω2ω1{{\omega }_{2}}-{{\omega }_{1}} is the bandwidth.
Therefore,
ω2ω1=2Δω ω2ω1=2×R2L ω2ω1=RL \begin{aligned} & {{\omega }_{2}}-{{\omega }_{1}}=2\Delta \omega \\\ & \Rightarrow {{\omega }_{2}}-{{\omega }_{1}}=2\times \dfrac{R}{2L} \\\ & \therefore {{\omega }_{2}}-{{\omega }_{1}}=\dfrac{R}{L} \\\ \end{aligned}

Therefore, the bandwidth is RL\dfrac{R}{L}.

Note:
At resonance, the current increases infinitely as the impedance becomes minimum. Half power frequencies are those frequencies at which the current attains its root mean squared value. Root mean squared current is defined as the maximum current divided by root two. It is also calculated by taking the average square of all currents.