Solveeit Logo

Question

Question: Domain of f(x) = \(\sqrt{\lbrack x\rbrack - 1 + x^{2}}\); where [.] denotes the greatest integer fun...

Domain of f(x) = [x]1+x2\sqrt{\lbrack x\rbrack - 1 + x^{2}}; where [.] denotes the greatest integer function, is

A

(-∞, -2) ∪ [1, ∞)

B

(-∞, - 2\sqrt { 2 } ) ∪ [1, ∞)

C

(-∞, -3) ∪ [1, ∞)

D

(−∞, 3- \sqrt { 3 }) ∪ [1, ∞)

Answer

(−∞, 3- \sqrt { 3 }) ∪ [1, ∞)

Explanation

Solution

We must have [x] − 1 + x2 ≥ 0

⇒ x2 - 1 ≥ -[x]

The graphs of y = x2 - 1 and y = −[x] intersect somewhere in (-2, -1). Thus at the point of intersection x2 – 1 = 2 ⇒ x = √3

From the adjacent graph we get domain as

(-∞, 3- \sqrt { 3 } ] ∪ [1, ∞)