Solveeit Logo

Question

Question: Domain of f(x) = \(\sin ^ { - 1 } \left[ \log _ { 2 } \left( \frac { x ^ { 2 } } { 2 } \right) \rig...

Domain of f(x) = sin1[log2(x22)]\sin ^ { - 1 } \left[ \log _ { 2 } \left( \frac { x ^ { 2 } } { 2 } \right) \right] , where [.] denotes the greatest integer functions, is

A

[8,8][ - \sqrt { 8 } , \sqrt { 8 } ]

B

[8,1)(1,8][ - \sqrt { 8 } , - 1 ) \cup ( 1 , \sqrt { 8 } ]

C

[-1, -1]

D

(8,1][1,8)( - \sqrt { 8 } , - 1 ] \cup [ 1 , \sqrt { 8 } )

Answer

(8,1][1,8)( - \sqrt { 8 } , - 1 ] \cup [ 1 , \sqrt { 8 } )

Explanation

Solution

We must have 1[log2(x22)]- 1 \leq \left[ \log _ { 2 } \left( \frac { x ^ { 2 } } { 2 } \right) \right] ≤1

1log2(x22)<2- 1 \leq \log _ { 2 } \left( \frac { x ^ { 2 } } { 2 } \right) < 2

12(x22)<4\frac { 1 } { 2 } \leq \left( \frac { x ^ { 2 } } { 2 } \right) < 4 ⇒ 1 ≤ x2 < 8

x(8,1][1,8)x \in ( - \sqrt { 8 } , - 1 ] \cup [ 1 , \sqrt { 8 } )