Solveeit Logo

Question

Question: Does \(\sin 180+\sin 45=\sin 225\) ?...

Does sin180+sin45=sin225\sin 180+\sin 45=\sin 225 ?

Explanation

Solution

Here we have been given an equation and we have to check whether the right hand side value is equal to the left hand side value. Firstly we will take the LHSLHS value and find its value using sine value at the given angles. Then we will take the RHSRHS value and divide the angle in it in two parts and apply the addition formula of trigonometric function sine. Finally we will check whether the LHSLHS is equal to RHSRHS and get our desired answer.

Complete step by step answer:
We have been given the equation as follows:
sin180+sin45=sin225\sin 180+\sin 45=\sin 225
Now we will take LHSLHS function and find its value by using basic values of sine at some angles as follows:
LHS=sin180+sin45\Rightarrow LHS=\sin 180+\sin 45
We know sinnπ=0\sin n\pi =0 nZ\forall n\in Z and sin45=12\sin 45=\dfrac{1}{\sqrt{2}} using these values above we get,
LHS=0+12\Rightarrow LHS=0+\dfrac{1}{\sqrt{2}}
LHS=12\Rightarrow LHS=\dfrac{1}{\sqrt{2}}….(1)\left( 1 \right)
Next we will take RHSRHS function and find its value as follows:
RHS=sin225\Rightarrow RHS=\sin 225
We can write sin225=sin(180+45)\sin 225=\sin \left( 180+45 \right) so,
RHS=sin(180+45)\Rightarrow RHS=\sin \left( 180+45 \right)
Using the addition formula which is sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B above where A=180A=180 and B=45B=45 we get,
RHS=sin180cos45+cos180sin45\Rightarrow RHS=\sin 180\cos 45+\cos 180\sin 45
We know that sin180=0,sin45=12,cos180=1,cos45=12\sin 180=0,\sin 45=\dfrac{1}{\sqrt{2}},\cos 180=-1,\cos 45=\dfrac{1}{\sqrt{2}} substituting the value above we get,
RHS=0×12+(1)×12\Rightarrow RHS=0\times \dfrac{1}{\sqrt{2}}+\left( -1 \right)\times \dfrac{1}{\sqrt{2}}
RHS=12\Rightarrow RHS=-\dfrac{1}{\sqrt{2}}….(2)\left( 2 \right)
On comparing equation (1) and (2) we can see that the two values are not equal.
LHSRHS\therefore LHS\ne RHS
Hence the answer is sin180+sin45sin225\sin 180+\sin 45\ne \sin 225 .

Note:
We should know that angle 225225 lies in the third quadrant and sine in the third quadrant is always negative so from here we can reach the correct answer.