Solveeit Logo

Question

Mathematics Question on Triangles

ΔODC ~ΔOBA, \angleBOC = 125° and \angleCDO = 70°. Find \angleDOC, \angleDCO and \angleOAB.
ΔODC ~ΔOBA

Answer

DOB is a straight line.
\angleDOC + \angleCOB = 180°
\angleDOC = 180° − 125° = 55°

In ∆DOC,
\angleDCO + \angleCDO + \angleDOC = 180° (The sum of the measures of the angles of a triangle is 180°)
\angleDCO + 70º + 55º = 180°
\angleDCO = 55°

It is given that ∆ODC ∼ ∆OBA.
\angleOAB = \angleOCD [Corresponding angles are equal in similar triangles]
\angleOAB = 55°