Question
Question: Distance of the point \(\left( x _ { 1 } , y _ { 1 } , z _ { 1 } \right)\) from the line \(\frac {...
Distance of the point (x1,y1,z1) from the line lx−x2=my−y2=nz−z2, where l m and n are the direction cosines of line is
A
(x1−x2)2+(y1−y2)2+(z1−z2)2−[(1x1−x2)+m(y1−y2)+n(z1−z2)]2
B
(x2−x1)2+(y2−y1)2+(z2−z1)2
C
(x2−x1)l+(y2−y1)m+(z2−z1)n
D
None of these
Answer
(x1−x2)2+(y1−y2)2+(z1−z2)2−[(1x1−x2)+m(y1−y2)+n(z1−z2)]2
Explanation
Solution
Let r1=(x2−x1)i+(y2−y1)j+(z2−z1)k r2=li+mj+nk

∴ cosθ=∣r1∣∣r2∣r2⋅r1
Also, d=∣r1∣sinθ ,
⇒
⇒ d2=∣r1∣2(1−∣r1∣2∣r2∣2r1⋅r2)
⇒ , {where ∣r2∣=1}
⇒
Therefore, distance of the point (x1,y1,z1) from the line is
d =.