Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

k=16[sin2kπ7icos2kπ7]\displaystyle \sum_{k=1}^{6}\left[\sin \frac{2 k \pi}{7}-i \cos \frac{2 k \pi}{7}\right] is equal to

A

-1

B

0

C

#NAME?

D

i

Answer

i

Explanation

Solution

Given, k=16[sin2kπ7icos2πk7] \displaystyle \sum_{k=1}^{6}\left[\sin \frac{2 k \pi}{7}-i \cos \frac{2 \pi k}{7}\right]
=k=16[(i)(cos2kπ7+isin2πk7)]=\displaystyle \sum_{k=1}^{6}\left[(-i)\left(\cos \frac{2 k \pi}{7}+i \sin \frac{2 \pi k}{7}\right)\right]
=(i)k=16(cos2kπ7+isin2πk7)=(-i) \displaystyle \sum_{k=1}^{6}\left(\cos \frac{2 k \pi}{7}+i \sin \frac{2 \pi k}{7}\right)
=(i)k=16αk=(-i) \displaystyle \sum_{k=1}^{6} \alpha^{k}
Let α=cos2πk7+isin2πk7\alpha =\cos \frac{2 \pi k}{7}+i \sin \frac{2 \pi k}{7}
=(i)(α+α2+α3++α6)=(-i)\left(\alpha+\alpha^{2}+\alpha^{3}+\ldots+\alpha^{6}\right)
It is a GP of which the first term is α\alpha, number of terms is 6 and the common ratio is α\alpha.
S=(i)α(1α6)1α=(i)αα71α\therefore S=(-i) \frac{\alpha\left(1-\alpha^{6}\right)}{1-\alpha}=(-i) \frac{\alpha-\alpha^{7}}{1-\alpha}
=(1)α11α=i=(-1) \frac{\alpha-1}{1-\alpha}=i
[α7=cos2π+isin2π=1]\left[\because \alpha^{7}=\cos 2 \pi+i \sin 2 \pi=1\right]