Solveeit Logo

Question

Mathematics Question on limits of trigonometric functions

limx0xsinxx+sin2x\displaystyle\lim_{x\to0} \sqrt{\frac{x-\sin x}{x+\sin^{2}x}} is equal to

A

1

B

0

C

\infty

D

None of these

Answer

0

Explanation

Solution

limx0xsinxx+sin2x=limx01sinxx1+sin2xx\displaystyle\lim_{x\to0} \sqrt{\frac{x-\sin x}{x+\sin^{2}x}} = \displaystyle\lim_{x\to0} \sqrt{\frac{1- \frac{\sin x}{x}}{1+ \frac{\sin^{2}x}{x}}}
=limx01sinxx1+(sinxx)sinx=111+1×0=0=\displaystyle\lim_{x\to0} \sqrt{\frac{1- \frac{\sin x}{x}}{1+ \left(\frac{\sin x}{x}\right)\sin x}} = \sqrt{\frac{1-1}{1+1\times0}} = 0