Solveeit Logo

Question

Mathematics Question on limits of trigonometric functions

limx0(tanx2x+42)\displaystyle \lim_{x\to0}\left(\frac{\tan \,x}{\sqrt{2x +4} - 2}\right) is equal to

A

2

B

3

C

4

D

6

Answer

2

Explanation

Solution

limx0(tanx2x+42)[00]\displaystyle\lim_{x \rightarrow 0}\left(\frac{\tan \,x}{\sqrt{2 x+4}-2}\right) \,\,\,\left[\frac{0}{0}\right] form
Applying L' Hopitals' rule, we get
limx0(sec2x22x2x+40)\displaystyle\lim _{x \rightarrow 0}\left(\frac{\sec ^{2} x}{\frac{2}{2x\sqrt{2x +4}}-0}\right)
=limx0((2x+4)sec2x)=\displaystyle\lim _{x \rightarrow 0}\left((\sqrt{2 x+4}) \sec ^{2} x\right)
=2×0+4×1=2=\sqrt{2 \times 0+4} \times 1=2