Solveeit Logo

Question

Mathematics Question on limits and derivatives

limx0sin(πcos2x)x2\displaystyle \lim_{x\to0} \frac{sin\left(\pi\,cos^{2} x\right)}{x^{2}} equals

A

π-\pi

B

11

C

1-1

D

π\pi

Answer

π\pi

Explanation

Solution

Consider limx0sin(πcos2x)x2\displaystyle \lim_{x\to0} \frac{sin\left(\pi\,cos^{2} x\right)}{x^{2}} =limx0sin(ππsin2x)x2= \displaystyle \lim_{x\to0} \frac{sin\left(\pi-\pi\,sin^{2} x\right)}{x^{2}} [sin(πθ)=sinθ]\left[\because sin \left(\pi - \theta\right) = sin \,\theta\right] =limx0sin(πsin2x)πsin2x×(πsin2x)x2=π= \displaystyle \lim _{x\to 0} \frac{sin\left(\pi \,sin^{2} x\right)}{\pi \,sin^{2}x}\times\frac{\left(\pi \,sin^{2} x\right)}{x^{2}} = \pi