Solveeit Logo

Question

Mathematics Question on Derivatives

limx0ex2cosxx2=\displaystyle\lim_{x\to0}\frac{e^{x^2} -cos x}{x^{2}}=

A

32\frac{3}{2}

B

12\frac{1}{2}

C

1

D

32-\frac{3}{2}

Answer

32\frac{3}{2}

Explanation

Solution

limx0ex2cosxx2\displaystyle\lim _{x \rightarrow 0} \, \frac{e^{x^{2}}-\cos x}{x^{2}}

Using L'Hospital's rule,

limx02xex2+Sinx2x \lim_{ x\rightarrow 0} \frac{2xe^{x^2} + Sinx}{2x}

limabex2+limabSinx2x \lim_{a \rightarrow b} e^{x^2} + \lim_{a \rightarrow b} \frac{Sinx}{2x}

=1+12=32=1+\frac1{2} = \frac3{2}

So, The correct option is A.