Solveeit Logo

Question

Mathematics Question on Statistics

limx(x+6x+1)x+4=\displaystyle\lim_{x \to \infty} \left( \frac{x+6}{x+1}\right)^{x+4} =

A

e3e^3

B

e5e^5

C

e4e^4

D

Does not exist

Answer

e5e^5

Explanation

Solution

We have,
limx(x+6x+1)x+4=limx(1+6x1+1x)x+4\displaystyle\lim_{x\to\infty}\left(\frac{x+6}{x+1}\right)^{x+4} = \displaystyle\lim_{x\to\infty}\left(\frac{1+\frac{6}{x}}{1+\frac{1}{x}}\right)^{x+4}
=limx(1+6x)x(1+1x)x(1+6x)4(1+1x)4=e6e=e5=\displaystyle\lim_{x\to\infty} \frac{\left(1+\frac{6}{x}\right)^{x}}{\left(1+\frac{1}{x}\right)^{x}} \frac{\left(1+\frac{6}{x}\right)^{4}}{\left(1+ \frac{1}{x}\right)^{4}} =\frac{e^{6}}{e} =e^{5}