Solveeit Logo

Question

Mathematics Question on limits and derivatives

limx(2x3)(3x4)(4x5)(5x6)\displaystyle\lim_{x \to \infty} \frac{ (2x -3)(3x -4)}{(4x - 5)(5x - 6)} is equal to:

A

110 \frac{1}{10}

B

0

C

15 \frac{1}{5}

D

310 \frac{3}{10}

Answer

310 \frac{3}{10}

Explanation

Solution

Let f(x)=(2x3)(3x4)(4x5)(5x6)f(x) = \frac{ (2x -3)(3x -4)}{(4x - 5)(5x - 6)} we have to find limxf(x)\displaystyle\lim_{x \to \infty} f(x) Put x=1h, x = \frac{1}{h}, if x,h0x \to \infty ,h \to 0 then limxf(x)=limh0(2x3h)(3x4h)(4x5h)(5x6h)\displaystyle\lim_{x \to \infty} f(x) = \displaystyle\lim_{h \to 0} \frac{ (2x -3h)(3x -4h)}{(4x - 5h)(5x - 6h)} =620=310 = \frac{6}{20} = \frac{3}{10}