Solveeit Logo

Question

Mathematics Question on limits and derivatives

limxπ2cotxcosx(π2x)3\displaystyle\lim_{x \to \frac{\pi}{2}} \frac{\cot x - \cos x}{\left(\pi - 2x\right)^{3}} equals :

A

116\frac{1}{16}

B

18\frac{1}{8}

C

14\frac{1}{4}

D

124\frac{1}{24}

Answer

116\frac{1}{16}

Explanation

Solution

limxπ2cotxcosx(π2x)3\displaystyle\lim_{x \to \frac{\pi}{2}} \frac{\cot x - \cos x}{\left(\pi - 2x\right)^{3}}
Put, π2x=t\frac{\pi}{2}-x = t
limt0tantsint8t3\displaystyle\lim_{t \to 0}\frac{\tan \,t-\sin \,t}{8t^{3}}
=limt0sint2sin2t28t3=\displaystyle\lim_{t \to 0}\frac{\sin t\cdot 2 \sin^{2} \frac{t}{2}}{8t^{3}}
=116.= \frac{1}{16}.