Solveeit Logo

Question

Mathematics Question on limits and derivatives

limxπ21sinxcosx \displaystyle\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin \, x}{\cos \, x} is equal to

A

0

B

-1

C

1

D

does not exist

Answer

0

Explanation

Solution

Since limxπ21sinxcosx \displaystyle\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin \, x}{\cos \, x} =limy0[1sin(π2y)cos(π2y)]= \displaystyle\lim_{y \to 0}\left[\frac{1-\sin\left(\frac{\pi}{2}-y\right)}{\cos\left(\frac{\pi}{2}-y\right)}\right] (taking π2x=y\frac{\pi}{2} - x = y) =limy01cosysiny = \displaystyle\lim_{y \to 0} \frac{1 - \cos\, y}{\sin\, y} =limy02sin2y22siny2cosy2= \displaystyle\lim_{y \to 0} \frac{2 \, \sin^2 \frac{y}{2}}{2 \, \sin \frac{y}{2} \cos \frac{y}{2}} =limy0tany2=0 = \displaystyle\lim_{y \to 0} \: \tan \frac{y}{2} = 0