Solveeit Logo

Question

Mathematics Question on Derivatives

limx2\displaystyle \lim_{x \to 2} x1002100x77277\frac{x^{100}-2^{100}}{x^{77}-2^{77}} is equal to

A

10077\frac{100}{77}

B

10077(222)\frac{100}{77}\left(2^{22}\right)

C

10077(221)\frac{100}{77}\left(2^{21}\right)

D

10077(223)\frac{100}{77}\left(2^{23}\right)

Answer

10077(223)\frac{100}{77}\left(2^{23}\right)

Explanation

Solution

limx2x1002100x77277\displaystyle\lim _{x \rightarrow 2} \frac{x^{100}-2^{100}}{x^{77}-2^{77}}
=limx2x1002100x2×x2x77277=\displaystyle\lim _{x \rightarrow 2} \frac{x^{100}-2^{100}}{x-2} \times \frac{x-2}{x^{77}-2^{77}}
(limxaxmamxa=mam1)\left(\because \,\displaystyle\lim _{x \rightarrow a} \frac{x^{m} \quad a^{m}}{x-a}=m a^{m-1}\right)
=limx2(x1002100x2)×1limx2(x77277x2)=\displaystyle\lim _{x \rightarrow 2}\left(\frac{x^{100}-2^{100}}{x-2}\right) \times \frac{1}{\displaystyle\lim _{x \rightarrow 2}\left(\frac{x^{77}-2^{77}}{x-2}\right)}
=100(2)99×177(2)76=100(2)^{99} \times \frac{1}{77(2)^{76}}
=10077(2)23=\frac{100}{77}(2)^{23}