Question
Mathematics Question on limits and derivatives
x→0lim[[x−3]sin[x−3]], where [ . ] denotes greatest integer function is
A
0
B
1
C
does not exist
D
sin 1
Answer
does not exist
Explanation
Solution
x→0lim[[x−3]sin[x−3]] For x→0+,[x−3]=−3 ∴[x−3]sin[x−3]=−3sin(−3)=−3sin3∈(0,1) ∴x→0+lim[x−3]sin[x−3]=0 For x→0−,[x−3]=−4 ∴[x−3]sin[x−3]=4sin4 lies in (−1,0) ∴x→0−lim[x−3]sin[x−3]=−1∴ Limit does not exist.