Solveeit Logo

Question

Mathematics Question on limits and derivatives

limx0[sin[x3][x3]]\displaystyle\lim_{x \to 0}\left[\frac{sin\left[x-3\right]}{\left[x-3\right]}\right], where [ . ] denotes greatest integer function is

A

0

B

1

C

does not exist

D

sin 1

Answer

does not exist

Explanation

Solution

limx0[sin[x3][x3]]\displaystyle\lim_{x \to 0}\left[\frac{sin\left[x-3\right]}{\left[x-3\right]}\right] For x0+,[x3]=3x \to 0^{+}, \left[x -3\right] = -3 sin[x3][x3]=sin(3)3=sin33(0,1)\therefore \frac{sin\left[x-3\right]}{\left[x-3\right]} = \frac{sin\left(-3\right)}{-3} = \frac{sin\,3}{-3} \in \left(0, 1\right) limx0+sin[x3][x3]=0\therefore \displaystyle\lim_{x \to0^{+}} \frac{sin\left[x-3\right]}{\left[x-3\right]} = 0 For x0,[x3]=4x \to 0^{-}, \left[x -3\right] = -4 sin[x3][x3]=sin44\therefore \frac{sin\left[x-3\right]}{\left[x-3\right]} = \frac{sin\,4}{4} lies in (1,0)\left(-1, 0\right) limx0sin[x3][x3]=1\therefore \displaystyle\lim_{x \to 0^{-}} \frac{sin\left[x-3\right]}{\left[x-3\right]} = -1 \therefore Limit does not exist.