Solveeit Logo

Question

Mathematics Question on Derivatives

limx0(109sin9xsin10x)(87sin7xsin8x)(65sin5xsin6x)(43sin3xsin4x)(sinxsin2x)\displaystyle \lim_{x \to 0} \left(\frac{10}{9}\frac{sin \, 9x}{sin \, 10x}\right) \left(\frac{8}{7}\frac{sin \, 7x}{sin \, 8x}\right) \left(\frac{6}{5}\frac{sin \, 5x}{sin \, 6x}\right) \left(\frac{4}{3}\frac{sin \, 3x}{sin \, 4x}\right) \left(\frac{sin \, x}{sin \, 2x}\right) =

A

63256\frac{63}{256}

B

16\frac{1}{6}

C

65\frac{6}{5}

D

12\frac{1}{2}

Answer

12\frac{1}{2}

Explanation

Solution

limx0(109sin9xsin10x)(87sin7xsin8x)\underset{{x \rightarrow 0}}{\lim}\left(\frac{10}{9} \frac{\sin 9 x}{\sin 10 x}\right)\left(\frac{8}{7} \frac{\sin 7 x}{\sin 8 x}\right)
(65sin5xsin6x)(43sin3xsin4x)(sinxsin2x)\left(\frac{6}{5} \frac{\sin 5 x}{\sin 6 x}\right)\left(\frac{4}{3} \frac{\sin 3 x}{\sin 4 x}\right)\left(\frac{\sin x}{\sin 2 x}\right)
=limx0(sin9x9x1sin10x10x)(sin7x7x1sin8x8x)=\underset{{x \rightarrow 0}}{\lim} \left(\frac{\sin 9 x}{9 x} \cdot \frac{1}{\frac{\sin 10 x}{10 x}}\right)\left(\frac{\sin 7 x}{7 x} \cdot \frac{1}{\frac{\sin 8 x}{8 x}}\right)
=(sin5x5x1sin6x6x)(sin3x3x1sin4x4x)=\left(\frac{\sin 5 x}{5 x} \cdot \frac{1}{\frac{\sin 6 x}{6 x}}\right)\left(\frac{\sin 3 x}{3 x} \cdot \frac{1}{\frac{\sin 4 x}{4 x}}\right)
(sinxx1sin2x2x12)\left(\frac{\sin x}{x} \frac{1}{\frac{\sin 2 x}{2 x}} \cdot \frac{1}{2}\right)
=12[limf(x)0sinf(x)f(x)=1]=\frac{1}{2}\left[\because \lim _{f(x) \rightarrow 0} \frac{\sin f(x)}{f(x)}=1\right]