Solveeit Logo

Question

Mathematics Question on limits and derivatives

limx0xexsinxx\displaystyle\lim_{x \to 0} \frac{xe^x - \sin \, x}{x} is equal to

A

3

B

1

C

0

D

2

Answer

0

Explanation

Solution

limx0xexsinxx(00form)\displaystyle\lim _{x \rightarrow 0} \frac{x e^{x}-\sin\, x}{x} \,\,\left(\frac{0}{0}\text{form} \right)
=limx0xex+excosx1=\displaystyle\lim _{x \rightarrow 0} \frac{x e^{x}+e^{x}-\cos\, x}{1} \,\, [using L' Hospital's rule]
=0+11=0=0+1-1=0