Solveeit Logo

Question

Mathematics Question on limits and derivatives

limx01cos2x2x\displaystyle\lim_{x \to 0} \frac{ \sqrt{1 -\cos \, 2x}}{\sqrt{2} x} is

A

1

B

-1

C

0

D

does not exist

Answer

does not exist

Explanation

Solution

lim1cos2x2xlim1(12sin2x)2x\lim\frac{\sqrt{1-\cos 2x}}{\sqrt{2} x} \Rightarrow \lim \frac{\sqrt{1-\left(1-2 \sin^{2} x\right)}}{\sqrt{2} x} limx02sin2x2xlimx0sinxx\displaystyle\lim_{x \to0} \frac{\sqrt{2 \sin^{2} x}}{\sqrt{2} x} \Rightarrow \lim_{x \to0} \frac{\left|\sin x\right|}{x} The limit of above does not exist as LHS = -1 \neq RHL = 1