Solveeit Logo

Question

Mathematics Question on limits and derivatives

limx0\displaystyle \lim_{x \to 0} cosecxcotxx\frac{cosec\,x-cot\,x}{x} is

A

12\frac{-1}{2}

B

11

C

12\frac{1}{2}

D

1-1

Answer

12\frac{1}{2}

Explanation

Solution

limx0\displaystyle \lim_{x \to 0} cosecxcotxx\frac{cosec\,x-cot\,x}{x} =limx0=\displaystyle \lim_{x \to 0} \left\\{\frac{\frac{1}{sin\,x}-\frac{cos\,x}{sin\,x}}{x} \right\\} =limx0=\displaystyle \lim_{x \to 0} (1cosxxsinx)\left(\frac{1-cos\,x}{x\,sin\,x}\right) =limx0=\displaystyle \lim_{x \to 0} 11+2sin2(x/2)x×2sin(x2)cos(x2)\frac{1-1+2\,sin^{2}\left(x/2\right)}{x \times 2\,sin \left(\frac{x}{2}\right)cos \left(\frac{x}{2}\right)} =limx0=\displaystyle \lim_{x \to 0} sin(x2)xcos(x2)\frac{sin\left(\frac{x}{2}\right)}{x\,cos\left(\frac{x}{2}\right)} =limx20=\displaystyle \lim_{\frac{x}{2} \to 0} tanx2x2×12\frac{tan \frac{x}{2}}{\frac{x}{2}}\times\frac{1}{2} =12×1=1/2=\frac{1}{2}\times1=1/2