Question
Mathematics Question on limits and derivatives
x→0lim coscx−1cosax−cosbx=
A
a2+b2−c2
B
(a2+b2)/c2
C
a2+b2+c2
D
(a2−b2)/c2
Answer
(a2−b2)/c2
Explanation
Solution
We have x→0lim −2sin2(cx/2)−2sin(2(a+b)x)sin(2(a−b)x) =x→0lim x2sin(2(a+b)x)⋅sin(2(a−b)x)⋅sin22cxx2 =x→0lim 2(a+b)x⋅(a+b2)sin2(a+b)x⋅2(a−b)x⋅a−b2sin2(a−b)x⋅sin22cx(2cx)2×c24 =\bigg[\left(\frac{a+b}{2}\right)\left(\frac{a-b}{2}\right)\left(\frac{4}{c^{2}}\right) \displaystyle \lim_{x \to 0}\left\\{\frac{sin \frac{\left(a+b\right)x}{2}}{\frac{\left(a+b\right)x}{2}}\right\\} \times x→0lim \left\\{\frac{sin \frac{\left(a-b\right)x}{2}}{\left(\frac{a-b}{2}\right)x}\right\\} x→0lim \left\\{\frac{\frac{cx}{2}}{sin \frac{cx}{2}}\right\\}^{2}\bigg] =(2a+b×2a−b×c24) =c2a2−b2