Solveeit Logo

Question

Mathematics Question on Definite Integral

limx0atanxasinxtanxsinx \displaystyle \lim_{x \to 0} \frac{a^{\tan \, x} - a^{\sin \, x}}{\tan \, x - \sin \, x} is equal to (a>0)(a > 0)

A

logea\log_e a

B

1

C

0

D

e

Answer

logea\log_e a

Explanation

Solution

We have, limx0atanxasinxtanxsinx=limx0asinx(atanxsinx1tanxsinx)\displaystyle \lim _{x \rightarrow 0} \frac{a^{\tan x}-a^{\sin x}}{\tan x-\sin x}= \displaystyle \lim _{x \rightarrow 0} a^{\sin x}\left(\frac{a^{\tan x-\sin x}-1}{\tan x-\sin x}\right) =logea=\log _{ e } a [limx0ax1x=logea]\left[\because \displaystyle \lim _{x \rightarrow 0} \frac{ a ^{ x }-1}{ x }= \log _{ e } a \right]