Solveeit Logo

Question

Mathematics Question on Statistics

limx06x3x2x+1x2=\displaystyle\lim_{x \to 0} \frac{6^{x} -3^{x} -2^{ x}+1}{x^{2}} =

A

loge32\log_e \frac{3}{2}

B

loge5\log_e 5

C

loge6\log_e 6

D

loge2loge3\log_e 2 \log_e 3

Answer

loge2loge3\log_e 2 \log_e 3

Explanation

Solution

limx06x3x2x+1x2\displaystyle\lim_{x \to 0} \frac{6^{x} -3^{x} -2^{ x}+1}{x^{2}}
Applying L-Hospital's rule,
=limx06xloge63xloge32xloge22x= \displaystyle\lim _{x\to 0} \frac{6^{x} \log_{e} 6-3^{x } \log _{e} 3-2^{x} \log _{e} 2}{2x}
Again, applying L-Hospital's rule,
limx06x(loge6)23x(loge3)22x(loge2)22\displaystyle\lim _{x\to 0} \frac{6^{x} \left(\log _{e} 6\right)^{2}-3^{x } \left(\log _{e} 3\right)^{2} - 2^{x}\left( \log _{e} 2\right)^{2}}{2}
=(loge6)2(loge3)2(loge2)22= \frac{ \left(\log _{e} 6\right)^{2}- \left(\log _{e} 3\right)^{2} -\left( \log _{e} 2\right)^{2}}{2}
=(loge3.2)2(loge3)2(loge2)22= \frac{ \left(\log _{e} 3.2\right)^{2}- \left(\log _{e} 3\right)^{2} -\left( \log _{e} 2\right)^{2}}{2}
=(loge3+loge2)2(loge3)2(loge2)22=\frac{ \left(\log _{e} 3 +\log _{e} 2\right)^{2}- \left(\log _{e} 3\right)^{2} -\left( \log _{e} 2\right)^{2}}{2}
=(loge3)2(loge2)2+2loge3loge2(loge3)2(loge2)22=\frac{ \left(\log _{e} 3\right)^{2}- \left(\log _{e} 2\right)^{2} + 2 \log _{e} 3 \log _{e} 2 - \left(\log _{e} 3\right)^{2} - \left( \log _{e} 2\right)^{2}}{2}
=loge3loge2= \log _{e} 3 \log _{e} 2