Solveeit Logo

Question

Mathematics Question on limits and derivatives

limx0\displaystyle \lim_{x \to 0} 1cosmx1cosnx=\frac{1-cos\,mx}{1-cos\,nx}=

A

m/nm/n

B

m2/n2m^2/n^2

C

00

D

n2/m2n^2/m^2

Answer

m2/n2m^2/n^2

Explanation

Solution

limx0\displaystyle \lim_{x \to 0} 1cosmx1cosnx\frac{1-cos\,mx}{1-cos\,nx} =limx0=\displaystyle \lim_{x \to 0} 2sin2(mx/2)2sin2(nx/2)\frac{2\,sin^{2}\left(mx/2\right)}{2\,sin^{2}\left(nx/2\right)} =limx0(sin(mx/2)(mx/2))2m2x24limx0(sin(nx/2)(nx/2))2n2x24=\frac{\displaystyle \lim_{x \to 0}\left(\frac{sin\left(mx/2\right)}{\left(mx/2\right)}\right)^{2}\cdot\frac{m^{2}x^{2}}{4} }{\displaystyle \lim_{x \to 0} \left(\frac{sin\left(nx/2\right)}{\left(nx/2\right)}\right)^{2}\cdot\frac{n^{2}x^{2}}{4}} =m2n2=\frac{m^{2}}{n^{2}}