Solveeit Logo

Question

Mathematics Question on Derivatives

limx01321x \displaystyle\lim_{x\rightarrow0} \frac{1}{3-2^{\frac{1}{x}}} is equal to

A

0

B

11

C

12\frac{1}{2}

D

13\frac{1}{3}

Answer

13\frac{1}{3}

Explanation

Solution

limx01321/x\displaystyle \lim _{x \rightarrow 0^{-}} \frac{1}{3-2^{1 / x}}
Put x=0hx =0-h
limh013210h\therefore\displaystyle \lim _{h \rightarrow 0} \frac{1}{3-2^{\frac{1}{0-h}}}
=limh01321h=\displaystyle \lim _{h \rightarrow 0} \frac{1}{3-2^{-\frac{1}{h}}}
=13210=132=\frac{1}{3-2^{-\frac{1}{0}}}=\frac{1}{3-2^{-\infty}}
=130=13=\frac{1}{3-0}=\frac{1}{3}