Solveeit Logo

Question

Mathematics Question on applications of integrals

limx(3x+1+3x1)6+(3x+13x1)6(x+x21)6+(xx21)6x3\displaystyle\lim _{x \rightarrow \infty} \frac{(\sqrt{3 x+1}+\sqrt{3 x-1})^6+(\sqrt{3 x+1}-\sqrt{3 x-1})^6}{\left(x+\sqrt{x^2-1}\right)^6+\left(x-\sqrt{x^2-1}\right)^6} x^3

A

is equal to 272\frac{27}{2}

B

is equal to 9

C

does not exist

D

is equal to 27

Answer

is equal to 27

Explanation

Solution

x→∞lim​(x+x2−1​)6+(x−x2−1​)6(3x+1​+3x−1​)6+(3x+1​−3x−1​)6​x3
x→∞lim​x3×⎩⎨⎧​x6{(1+1−x21​​)6+(1−1−x21​​)6}x3{(3+x1​​+3−x1​​)6+(3+x1​​−3−x1​​)6}​⎭⎬⎫​
=26+0(23​)6+0​=33=(27)
So, the correct answer is (D) : is equal to 27