Solveeit Logo

Question

Mathematics Question on limits and derivatives

limx0πx11+x1\displaystyle\lim _{x \rightarrow 0} \frac{\pi^{x}-1}{\sqrt{1+x}-1}

A

does not exist

B

equals loge(π2)\log_{e} \left(\pi^{2}\right)

C

equals 11

D

lies between 1010 and 1111

Answer

equals loge(π2)\log_{e} \left(\pi^{2}\right)

Explanation

Solution

limx0πx11+x1\displaystyle\lim _{x \rightarrow 0} \frac{\pi^{x}-1}{\sqrt{1+x}-1} [00\frac{0}{0} form]
=limx0πxlogeπ121+x=\displaystyle\lim _{x \rightarrow 0} \frac{\pi^{x} \log _{e} \pi}{\frac{1}{2 \sqrt{1+x}}}
=limx021+x(πxlogeπ)=\displaystyle\lim _{x \rightarrow 0} 2 \sqrt{1+x}\left(\pi^{x} \log _{e} \pi\right)
=21(π0logeπ)=2logeπ=logeπ2=2 \sqrt{1}\left(\pi^{0} \log _{e} \pi\right)=2 \log _{e} \pi=\log _{e} \pi^{2}