Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

limn((n+1)13n43+(n+2)13n43+.....+(2n)13n43)\displaystyle\lim_{n\to\infty} \left(\frac{\left(n+1\right)^{\frac{1}{3}} }{n^{\frac{4}{3}}} + \frac{\left(n+2\right)^{\frac{1}{3}}}{n^{\frac{4}{3}}} + ..... + \frac{\left(2n\right)^{\frac{1}{3}}}{n^{\frac{4}{3}}}\right) equal to :

A

43(2)43\frac{4}{3} \left(2\right)^{\frac{4}{3}}

B

34(2)4343\frac{3}{4} \left(2\right)^{\frac{4}{3}} - \frac{4}{3}

C

34(2)4334\frac{3}{4} \left(2\right)^{\frac{4}{3}} - \frac{3}{4}

D

43(2)34\frac{4}{3} \left(2\right)^{\frac{3}{4}}

Answer

34(2)4334\frac{3}{4} \left(2\right)^{\frac{4}{3}} - \frac{3}{4}

Explanation

Solution

limnr=1n1n(n+rn)1/3\lim_{n\to\infty} \sum^{n}_{r=1} \frac{1}{n} \left(\frac{n+r}{n}\right)^{1/3}
=01(1+x)1/3dx=34(24/31)= \int^{1}_{0} \left(1+x\right)^{1/3} dx = \frac{3}{4} \left(2^{4/3} -1\right)