Solveeit Logo

Question

Mathematics Question on limits and derivatives

limn[1n2sec21n2+2n2sec24n2..........+1nsec21]\displaystyle \lim_{n \to\infty} \left[\frac{1}{n^{2}} \sec^{2} \frac{1}{n^{2}} + \frac{2}{n^{2}} \sec^{2} \frac{4}{n^{2}}.......... + \frac{1}{n}\sec^{2} 1 \right] equals

A

12sec1\frac{1}{2} \sec 1

B

12cosec1\frac{1}{2} cosec\, 1

C

tan1\tan 1

D

12tan1\frac{1}{2} \tan 1

Answer

12tan1\frac{1}{2} \tan 1

Explanation

Solution

limn[1nsec21n2+2n2sec24n2+3n2sec29n2+....+1nsec21]\displaystyle \lim_{n \to\infty} \left[ \frac{1}{n} \sec^{2} \frac{1}{n^{2}} + \frac{2}{n^{2}} \sec^{2} \frac{4}{n^{2} } + \frac{3}{n^{2}} \sec^{2} \frac{9}{n^{2}} + .... + \frac{1}{n} \sec^{2} 1 \right] is equal to limnrn2sec2r2n2=limn1n.rnsec2r2n2\displaystyle \lim_{n \to\infty} \frac{r}{n^{2} } \sec^{2} \frac{r^{2}}{n^{2}} = \displaystyle \lim_{n \to\infty} \frac{1}{n} . \frac{r}{n} \sec^{2} \frac{r^{2}}{n^{2}} \Rightarrow Given limit is equal to value of integral 01xsec2x2dx\int\limits^{1}_{0} x \sec^{2} x^{2}dx or 12012xsecx2dx=1201sec2tdt \frac{1}{2} \int\limits^{1}_{0} 2x \sec x^{2} dx = \frac{1}{2} \int\limits^{1}_{0} \sec^{2} tdt [put x2=tx^2 = t ] =12(tant)01=12tan1= \frac{1}{2} \left(\tan t\right)^{1}_{0} = \frac{1}{2} \tan 1.