Question
Mathematics Question on limits and derivatives
n→∞limnsin3n2π⋅cos3n2π is
A
1
B
3π
C
6π
D
32π
Answer
32π
Explanation
Solution
n→∞limn⋅sin3n2π⋅cos3n2π
=\displaystyle\lim _{n \rightarrow \infty} n\left\\{\frac{\left(\sin \frac{2 \pi}{3 n}\right)}{\left(\frac{2 \pi}{3 n}\right)}\right\\} \cdot \cos \frac{2 \pi}{3 n} \times \frac{2 \pi}{3 n}
=(1)⋅cos(0∘)×32π
\left\\{\because \displaystyle\lim _{\theta \rightarrow \infty} \frac{\sin 1 / \theta}{1 / \theta}=1\right\\}
=1⋅32π=32π