Solveeit Logo

Question

Mathematics Question on limits and derivatives

limnnsin2π3ncos2π3n \displaystyle\lim _{n \rightarrow \infty} n \sin \frac{2 \pi}{3 n} \cdot \cos \frac{2 \pi}{3 n} is

A

11

B

π3\frac {\pi} {3}

C

π6\frac {\pi}{6}

D

2π3\frac {2\pi}{3}

Answer

2π3\frac {2\pi}{3}

Explanation

Solution

limnnsin2π3ncos2π3n\displaystyle \lim _{n \rightarrow \infty} n \cdot \sin \frac{2 \pi}{3 n} \cdot \cos \frac{2 \pi}{3 n}
=\displaystyle\lim _{n \rightarrow \infty} n\left\\{\frac{\left(\sin \frac{2 \pi}{3 n}\right)}{\left(\frac{2 \pi}{3 n}\right)}\right\\} \cdot \cos \frac{2 \pi}{3 n} \times \frac{2 \pi}{3 n}
=(1)cos(0)×2π3=(1) \cdot \cos \left(0^{\circ}\right) \times \frac{2 \pi}{3}
\left\\{\because \displaystyle\lim _{\theta \rightarrow \infty} \frac{\sin 1 / \theta}{1 / \theta}=1\right\\}
=12π3=2π3=1 \cdot \frac{2 \pi}{3}=\frac{2 \pi}{3}