Solveeit Logo

Question

Mathematics Question on Limits

limn[11+n+12+n+13+n++12n]\displaystyle \lim _{n \rightarrow \infty}\left[\frac{1}{1+n}+\frac{1}{2+n}+\frac{1}{3+n}+\ldots+\frac{1}{2 n}\right] is equal to

A

loge2\log _e2

B

loge(23)\log _e\left(\frac{2}{3}\right)

C

0

D

loge(32)\log _e\left(\frac{3}{2}\right)

Answer

loge2\log _e2

Explanation

Solution

limn(11+n++1n+n)=limnr=1n1n+r\lim_{n\to\infty} (\frac{1}{1+n}+…+\frac{1}{n+n})= \lim_{n\to\infty} ∑^n_{r=1}\frac{1}{n+r}
=limnr=1n1n(11+rn)=\lim_{n\to\infty} ∑^n_{r=1}\frac{1}{n}(\frac{1}{1+\frac{r}{n}})
=0111+xdx=[ln(1+x]01=n2= ∫_0^1 \frac{1}{1+x}dx=[ℓln(1+x]_0^1 ​=ℓn2