Solveeit Logo

Question

Mathematics Question on limits and derivatives

limh0\displaystyle \lim_{h \to 0} (a+h2)sin(a+h)a2sinah=\frac{\left(a+h^{2}\right)sin\left(a+h\right)-a^{2}\,sin\,a}{h}=

A

a2cosaa^2\,cos\,a

B

a2cosa+2asinaa^{2}\,cos\,a+2a\,sin\,a

C

a2sina+cosaa^{2}\,sin\,a+cos\,a

D

acosa+sinaa\,cos\,a+sin\,a

Answer

a2cosa+2asinaa^{2}\,cos\,a+2a\,sin\,a

Explanation

Solution

We have, limh0\displaystyle \lim_{h \to 0} (a+h2)sin(a+h)a2sinah\frac{\left(a+h^{2}\right)sin\left(a+h\right)-a^{2}\,sin\,a}{h} =limh0=\displaystyle \lim_{h \to 0} (a2+h2+2ah)[sinacosh+cosasinh]a2sinah\frac{\left(a^2+h^{2}+2ah\right)\left[sin\,a\,cos\,h+cos\,a\,sin\,h\right]-a^{2}\,sin\,a}{h} =limh0=\displaystyle \lim_{h \to 0} [a2sina(cosh1)h+a2cosasinhh\bigg[\frac{a^{2}\,sin\,a\left(cos\,h-1\right)}{h}+\frac{a^{2}\,cos\,a\,sin\,h}{h} +(h+2a)(sinacosh+cosasinh)]+\left(h+2a\right)\left(sin\,a\,cos\,h+cos\,a\,sin\,h\right)\bigg] =limh0=\displaystyle \lim_{h \to 0} [a2sina(2sin2h2)h22h2]+\left[\frac{a^{2}\,sin\,a\left(-2\,sin^{2}\, \frac{h}{2}\right)}{\frac{h^{2}}{2}}\cdot \frac{h}{2}\right]+ limh0\displaystyle \lim_{h \to 0} a2cosasinhh\frac{a^{2}\,cos\,a\,sin\,h}{h} +limh0(h+2a)sin(a+h)+\displaystyle \lim_{h \to 0}(h+2a)sin(a+h) =a2sina×0+a2cosa(1)+2asina=a^{2}\,sin\,a \times 0+a^{2}\,cos\,a\left(1\right)+2a\,sin\,a =a2cosa+2asina=a^{2}\,cos\,a+2a\,sin\,a.