Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

0π/2\displaystyle \int^{\sqrt{\pi}/2}_0 2x3sin(x2)dx=2x^{3} sin\left(x^{2}\right) dx =dx is equal to

A

12(1+π4)\frac{1}{\sqrt{2}} \left(1+\frac{\pi}{4}\right)

B

12(1π4)\frac{1}{\sqrt{2}} \left(1-\frac{\pi}{4}\right)

C

12(π21)\frac{1}{\sqrt{2}} \left(\frac{\pi}{2}-1\right)

D

12(1π2)\frac{1}{\sqrt{2}} \left(1-\frac{\pi}{2}\right)

Answer

12(1π4)\frac{1}{\sqrt{2}} \left(1-\frac{\pi}{4}\right)

Explanation

Solution

I=0π/22x3sin(x2)dxI =\int_{0}^{\sqrt{\pi} / 2} 2 x^{3} \sin \left(x^{2}\right) d x
=0π/22x2xsin(x2)dx=\int_{0}^{\sqrt{\pi} / 2} 2 x^{2} \cdot x \sin \left(x^{2}\right) d x
Put x2=tx^{2}=t
2xdx=dt\Rightarrow 2 x d x=d t
Also, when x=0,x=0, then t=0t=0
and when x=π2x=\frac{\sqrt{\pi}}{2}, then t=π4t=\frac{\pi}{4}
I=0π/4tsinItIIdt\Rightarrow I=\int_{0}^{\pi / 4} t \underset{I}{\text{sin}} \underset{ II }{t} d t
=[t(cost)]0π/40π/4cost(1)dt=[t(-\cos t)]_{0}^{\pi / 4}-\int_{0}^{\pi / 4}-\cos t(1) d t
=[tcost]0π/4+0π/4costdt=[-t \cos t]_{0}^{\pi / 4}+\int_{0}^{\pi / 4} \cos t d t
=[tcost+sint]0π/4=[-t \cos t+\sin t]_{0}^{\pi / 4}
=[π412+12]=\left[-\frac{\pi}{4} \cdot \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right]
=12(1π4)=\frac{1}{\sqrt{2}}\left(1-\frac{\pi}{4}\right)