Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

π/43π/4dx1+cosx\displaystyle\int_{\pi/4}^{3\pi/4}\frac{dx}{1+\cos\,x} is equal to

A

2

B

-2

C

12\frac{1}{2}

D

12-\frac{1}{2}

Answer

2

Explanation

Solution

Let I=π/43π/2dx1+cosx.................(1)I = \int^{ 3 \pi / 2 }_{ \pi / 4 } \frac{ dx }{ 1 + \cos \, x }................. ( 1)
\Rightarrow I=π/43π/2dx1+cos(πx)I = \int^{ 3 \pi / 2 }_{ \pi / 4 } \frac{ dx }{ 1 + \cos ( \pi - x ) }
I=π/43π/2dx1cosx...............(2)I = \int^{ 3 \pi / 2 }_{ \pi / 4 } \frac{ dx }{ 1 - \cos x } ...............(2)
On adding Eqs. (i) and (ii), we get
\, \, \, \, \, \, \, \, \, \, \, \, \, 2I=π/43π/2(11+cosx+11cosx)dx2I = \int^{ 3 \pi / 2 }_{ \pi / 4 } \Bigg ( \frac{1}{ 1 + \cos \, x } + \frac{1}{ 1 - \cos \, x } \Bigg ) dx
\Rightarrow \, \, \, \, \, \, 2I=π/43π/2(21cos2x)dx2I = \int^{ 3 \pi / 2 }_{ \pi / 4 } \Bigg ( \frac{2}{ 1 - \cos^2 \, x } \bigg ) \, dx
\Rightarrow \, \, \, \, \, \, I=π/43π/2cosec2xdx=[cotx]π/43π/4I = \int^{ 3 \pi / 2 }_{ \pi / 4 } cosec^2 \, x \, dx = [ - \cot \, x ] ^{3 \pi/ 4 }_{ \pi / 4 }
\, \, \, \, \, \, \, \, \, \, \, \, \, =[cot3π4+cotπ4] = \bigg [ - \cot \frac{ 3 \pi}{ 4 } + \cot \frac{\pi}{ 4 } \bigg ]
\, \, \, \, \, \, \, \, \, \, \, \, \, =(1)+1=2= - ( - 1 ) + 1 = 2