Solveeit Logo

Question

Mathematics Question on integral

1/22log10xdx=\displaystyle\int_{1/2}^{2}|\log_{10}\,x|dx=

A

log10(8e)\log_{10}\left(\frac{8}{e}\right)

B

12log10(8e)\frac{1}{2}\log_{10}\left(\frac{8}{e}\right)

C

log10(2e)log_{10}\left(\frac{2}{e}\right)

D

none of these.

Answer

12log10(8e)\frac{1}{2}\log_{10}\left(\frac{8}{e}\right)

Explanation

Solution

logxdx=xlogxx\int log \, x \, dx=x \,log x-x [By Using integration by parts] logxisve.forx,<1log x is -ve. for x, < 1 and +ve+ve for x>1x > 1 . Also log10x=logxlog10log_{10} \,x= \frac{log\,x}{log\,10} \therefore given integral =1log10[1/21logxdx+12logxdx]=\frac{1}{log\,10}\left[\int\limits_{1 /2}^{1}-log\,x\,dx+\int\limits_{1}^{2} log\,x\,dx\right] =1log10[xlogxx]1/21+1log10[xlogxx]12=-\frac{1}{log\,10} \left[x\,log\,x-x\right]_{1 /2}^{1}+\frac{1}{log\,10} \left[x\,log\,x-x\right]_{1}^{2} =1log10[112log12+12]+1log10[2log22+1]=-\frac{1}{log\,10}\left[-1-\frac{1}{2}log\frac{1}{2}+\frac{1}{2}\right]+\frac{1}{log\,10} \left[2\,log\,2-2+1\right] =1log10[1212log2]+2log21log10=\frac{1}{log\,10}\left[\frac{1}{2}-\frac{1}{2}log\,2\right]+\frac{2\,log\,2-1}{log\,10} =4log22+1log22log10=3log212log10=\frac{4\,log\,2-2+1-log\,2}{2\,log\,10}=\frac{3\,log\,2-1}{2\,log\,10} =12log8logelog10=12log(8e)log10=\frac{1}{2} \frac{log\,8-log\,e}{log\,10}=\frac{1}{2} \frac{log\left(\frac{8}{e}\right)}{log\,10} =12log10(8e)=\frac{1}{2}log_{10} \left(\frac{8}{e}\right)