Solveeit Logo

Question

Mathematics Question on Differentiability

Discuss the continuity of the function f(x)=sin2x1f(x)=\sin 2x-1 at the point x=0,x=0, and x=πx=\pi .

A

Continuous at x=0,πx=0,\,\pi

B

Discontinuous at x=0x=0 but continuous at x=πx=\pi

C

Continuous at x=0x=0 but discontinuous at x=πx=\pi

D

Discontinuous at x=0,πx=0,\,\pi

Answer

Continuous at x=0,πx=0,\,\pi

Explanation

Solution

Given, f(x)=sin2x1f(x)=\sin \,2x-1 At x=0,x=0, limx0f(x)=limh0f(0h)\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\,\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\,f(0-h)
=limh0[sin2h1]=\underset{h\to 0}{\mathop{\lim }}\,\,[-\sin \,2h-1]
=01=1=0-1=-1 limx0+f(x)=limh0f(0+h)\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\,f(0+h)
=limh0sin2h1=\underset{h\to 0}{\mathop{\lim }}\,\,\,\sin \,2h-1
=01=1=0-1=-1 and f(0)=sin01=1f(0)=sin0-1=-1 \because limx0f(x)=limx0+f(x)=f(0)\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\,\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\,f(x)=f(0)
\therefore f(x)f(x) is continuous at x=0x=0 Now, at x=πx=\pi limxπf(x)=limh0f(πh)\underset{x\to {{\pi }^{-}}}{\mathop{\lim }}\,\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,f(\pi -h)
=limh0sin2(πh)1=\underset{h\to 0}{\mathop{\lim }}\,\,\sin 2(\pi -h)-1
=limh0sin1h1=1=\underset{h\to 0}{\mathop{\lim }}\,\,\,-\sin 1h-1=-1 limxπ+f(x)=limh0f(π+h)\underset{x\to {{\pi }^{+}}}{\mathop{\lim }}\,\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\,f(\pi +h)
=limh0sin2(π+h)1=\underset{h\to 0}{\mathop{\lim }}\,\sin 2(\pi +h)-1
=limh0sin2h1=\underset{h\to 0}{\mathop{\lim }}\,\,\,\sin 2h-1
=01=1=0-1=-1 and f(π)=sin2π1=1f(\pi )=\sin \,2\pi -1=-1 \because limxπf(x)=limxπ+f(x)=f(π)\underset{x\to {{\pi }^{-}}}{\mathop{\lim }}\,\,f(x)=\underset{x\to {{\pi }^{+}}}{\mathop{\lim }}\,\,\,f(x)=f(\pi )
\therefore f(x)f(x) is continuous at x=πx=\pi also.