Solveeit Logo

Question

Question: Discuss the continuity of the following function at \[x = 0\]. If the function has a removable disco...

Discuss the continuity of the following function at x=0x = 0. If the function has a removable discontinuity, redefine the function so as to remove the discontinuity.
f(x) = \left\\{ {\begin{array}{*{20}{c}} {\dfrac{{{4^x} - {e^x}}}{{{6^x} - 1}}\,for\,x \ne 0} \\\ {\log \left( {\dfrac{2}{3}} \right)\,for\,x = 0} \end{array}} \right.

Explanation

Solution

We will find the left-hand limit and rind hand limit of the function at x=0x = 0, using the L’Hospital rule for indeterminate form. Then we will compare it with the value of the function x=0x = 0 to determine the type of discontinuity and if it will be a removable type of discontinuity we will rewrite to make it continuous.

Complete step-by-step answer:
Given data: f(x) = \left\\{ {\begin{array}{*{20}{c}} {\dfrac{{{4^x} - {e^x}}}{{{6^x} - 1}}\,for\,x \ne 0} \\\ {\log \left( {\dfrac{2}{3}} \right)\,for\,x = 0} \end{array}} \right.
We know that a function is continuous at a given point if and only if the left-hand limit, right-hand limit, and the value of the function at that point all are equal.
The left-hand limit of the function at x=0x = 0
limx0f(x)=limh0f(0h)\Rightarrow \mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{h \to 0} f(0 - h)
Substituting the value of the function, we get
limx04xex6x1=limh04heh6h1\Rightarrow \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{{4^x} - {e^x}}}{{{6^x} - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{4^{ - h}} - {e^{ - h}}}}{{{6^{ - h}} - 1}}
Now here substituting h=0h = 0 we are getting 00\dfrac{0}{0} form
So we will use the L’hospital rule which states that if limxah(x)g(x)\mathop {\lim }\limits_{x \to a} \dfrac{{h(x)}}{{g(x)}} is of 00\dfrac{0}{0} or \dfrac{\infty }{\infty } form then
limxah(x)g(x)=limxah(x)g(x)\Rightarrow \mathop {\lim }\limits_{x \to a} \dfrac{{h(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{h'(x)}}{{g'(x)}}
limh04heh6h1=limh0(log4)4h+eh(log6)6h\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{{4^{ - h}} - {e^{ - h}}}}{{{6^{ - h}} - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( {\log 4} \right){4^{ - h}} + {e^{ - h}}}}{{ - \left( {\log 6} \right){6^{ - h}}}}
Now substituting h=0h = 0, we get
=(log4)40+e0(log6)60= \dfrac{{ - \left( {\log 4} \right){4^0} + {e^0}}}{{ - \left( {\log 6} \right){6^0}}}
We know that a0=1{a^0} = 1, so using this, we get
=(log4)+1(log6)= \dfrac{{ - \left( {\log 4} \right) + 1}}{{ - \left( {\log 6} \right)}}
Using loge=1\log e = 1 and logAlogB=log(AB)\log A - \log B = \log \left( {\dfrac{A}{B}} \right) , we get
=1log4(log6)= \dfrac{{1 - \log 4}}{{ - \left( {\log 6} \right)}}
On multiplying numerator and denominator with (-1), we get
=log41log6= \dfrac{{\log 4 - 1}}{{\log 6}}

Now, the right-hand limit of the function at x=0x = 0
limx0+f(x)=limh0f(0+h)\Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f(x) = \mathop {\lim }\limits_{h \to 0} f(0 + h)
Substituting the value of the function, we get
limx0+4xex6x1=limh04heh6h1\Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{{4^x} - {e^x}}}{{{6^x} - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{4^h} - {e^h}}}{{{6^h} - 1}}
Now here substituting h=0h = 0 we are getting 00\dfrac{0}{0} form
So we will use the L’hospital rule which states that if limxah(x)g(x)\mathop {\lim }\limits_{x \to a} \dfrac{{h(x)}}{{g(x)}} is of 00\dfrac{0}{0} or \dfrac{\infty }{\infty } form then
limxah(x)g(x)=limxah(x)g(x)\Rightarrow \mathop {\lim }\limits_{x \to a} \dfrac{{h(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{h'(x)}}{{g'(x)}}
limh04heh6h1=limh0(log4)4heh(log6)6h\Rightarrow \mathop {\lim }\limits_{h \to 0} \dfrac{{{4^h} - {e^h}}}{{{6^h} - 1}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\log 4} \right){4^h} - {e^h}}}{{\left( {\log 6} \right){6^h}}}
Now substituting h=0h = 0, we get
=(log4)40e0(log6)60= \dfrac{{\left( {\log 4} \right){4^0} - {e^0}}}{{\left( {\log 6} \right){6^0}}}
We know that a0=1{a^0} = 1, so using this, we get
=log41log6= \dfrac{{\log 4 - 1}}{{\log 6}}
Using loge=1\log e = 1, we get
=1log4(log6)= \dfrac{{1 - \log 4}}{{ - \left( {\log 6} \right)}}
On multiplying numerator and denominator with (-1), we get
=log41log6= \dfrac{{\log 4 - 1}}{{\log 6}}
Now it is given that that f(0)=log(23)f(0) = \log \left( {\dfrac{2}{3}} \right)
Since the left-hand limit is equal to the right-hand limit, but they are not equal to the value of function removable discontinuity at x=0x = 0
Redefining the function so that the function becomes continuous at x=0x = 0
f(x) = \left\\{ {\begin{array}{*{20}{c}} {\dfrac{{{4^x} - {e^x}}}{{{6^x} - 1}}\,for\,x \ne 0} \\\ {\dfrac{{\log 4 - 1}}{{\log 6}}\,for\,x = 0} \end{array}} \right.

Note: While using the L’hospital rule i.e. if limxah(x)g(x)\mathop {\lim }\limits_{x \to a} \dfrac{{h(x)}}{{g(x)}} is of 00\dfrac{0}{0} or \dfrac{\infty }{\infty } form then
limxah(x)g(x)=limxah(x)g(x)\mathop {\lim }\limits_{x \to a} \dfrac{{h(x)}}{{g(x)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{h'(x)}}{{g'(x)}} , most of the students differentiate the whole h(x)g(x)\dfrac{{h(x)}}{{g(x)}} taking it as a single function which should not be done, we have to differentiate both numerator and the denominator separately, so remember this point to make a more accurate solution.