Solveeit Logo

Question

Question: Direction cosines of the line that makes equal angles with the three axes in a space are...

Direction cosines of the line that makes equal angles with the three axes in a space are

A

±13,±13,±13\pm \frac { 1 } { 3 } , \pm \frac { 1 } { 3 } , \pm \frac { 1 } { 3 }

B

±67,±23,±37\pm \frac { 6 } { 7 } , \pm \frac { 2 } { 3 } , \pm \frac { 3 } { 7 }

C

±13,±13,±13\pm \frac { 1 } { \sqrt { 3 } } , \pm \frac { 1 } { \sqrt { 3 } } , \pm \frac { 1 } { \sqrt { 3 } }

D

±17,±314,±114\pm \sqrt { \frac { 1 } { 7 } } , \pm \sqrt { \frac { 3 } { 14 } } , \pm \sqrt { \frac { 1 } { 14 } }

Answer

±13,±13,±13\pm \frac { 1 } { \sqrt { 3 } } , \pm \frac { 1 } { \sqrt { 3 } } , \pm \frac { 1 } { \sqrt { 3 } }

Explanation

Solution

l2+m2+n2=1l ^ { 2 } + m ^ { 2 } + n ^ { 2 } = 1cos2α+cos2β+cos2γ=1\cos ^ { 2 } \alpha + \cos ^ { 2 } \beta + \cos ^ { 2 } \gamma = 1

Now, α=β=γ\alpha = \beta = \gamma

3cos2α=13 \cos ^ { 2 } \alpha = 1

cosα=±1/3\cos \alpha = \pm 1 / \sqrt { 3 } i.e., l=m=n=±1/3l = m = n = \pm 1 / \sqrt { 3 } .

Hence required d.c.’s are ±13,±13,±13\pm \frac { 1 } { \sqrt { 3 } } , \pm \frac { 1 } { \sqrt { 3 } } , \pm \frac { 1 } { \sqrt { 3 } } .