Solveeit Logo

Question

Question: Dimensions of\(\frac{\mathbf{1}}{\mathbf{\mu}_{\mathbf{0}}\mathbf{\varepsilon}_{\mathbf{0}}}\mathbf{...

Dimensions of1μ0ε0,\frac{\mathbf{1}}{\mathbf{\mu}_{\mathbf{0}}\mathbf{\varepsilon}_{\mathbf{0}}}\mathbf{,} where symbols have their usual meaning, are

A

[LT1]\lbrack LT^{- 1}\rbrack

B

[L1T]\lbrack L^{- 1}T\rbrack

C

[L2T2]\lbrack L^{- 2}T^{2}\rbrack

D

[L2T2]\lbrack L^{2}T^{- 2}\rbrack

Answer

[L2T2]\lbrack L^{2}T^{- 2}\rbrack

Explanation

Solution

We know that velocity of light C=1μ0ε0C = \frac{1}{\sqrt{\mu_{0}\varepsilon_{0}}}

\therefore 1μ0ε0=C2\frac{1}{\mu_{0}\varepsilon_{0}} = C^{2}

\therefore So [1μ0ε0]=[LT1]2\left\lbrack \frac{1}{\mu_{0}\varepsilon_{0}} \right\rbrack = \lbrack LT^{- 1}\rbrack^{2} = [L2T2]\lbrack L^{2}T^{- 2}\rbrack.