Solveeit Logo

Question

Question: Dimensions of $\epsilon_0$ are...

Dimensions of ϵ0\epsilon_0 are

A

M1^{-1}L3^{-3}T4^{4}A2^{2}

B

M0^{0}L3^{-3}T3^{3}A3^{3}

C

M1^{-1}L3^{-3}T3^{3}A

D

M1^{-1}L3^{-3}T A2^{2}

Answer

M1^{-1}L3^{-3}T4^{4}A2^{2}

Explanation

Solution

From Coulomb's law, the force between two charges q1q_1 and q2q_2 separated by distance rr is F=14πϵ0q1q2r2F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}.

Rearranging for ϵ0\epsilon_0, we get ϵ0=q1q24πFr2\epsilon_0 = \frac{q_1 q_2}{4\pi F r^2}.

The dimensions of the quantities are:

  • Charge [q]=[AT][q] = [AT] (since current I=q/tI = q/t)

  • Force [F]=[MLT2][F] = [MLT^{-2}]

  • Distance [r]=[L][r] = [L]

4π4\pi is dimensionless.

Substituting these dimensions into the expression for ϵ0\epsilon_0:

[ϵ0]=[AT][AT][MLT2][L]2=[A2T2][ML3T2][\epsilon_0] = \frac{[AT][AT]}{[MLT^{-2}][L]^2} = \frac{[A^2T^2]}{[ML^3T^{-2}]}

[ϵ0]=[M1L3T2A2T2]=[M1L3T4A2][\epsilon_0] = [M^{-1}L^{-3}T^{2}A^2T^{2}] = [M^{-1}L^{-3}T^{4}A^{2}].