Solveeit Logo

Question

Question: The number 65 is circled. (65.) Find the sum: $\cos \theta + 2^2 \cos 2\theta + 3^2 \cos 3\theta + ....

The number 65 is circled. (65.) Find the sum: cosθ+22cos2θ+32cos3θ+...+n2cosnθ\cos \theta + 2^2 \cos 2\theta + 3^2 \cos 3\theta + ... + n^2 \cos n\theta.

Objective Questions

Answer

k=1nk2coskθ=sinnθ24sin3θ2[2sinθ2cos(2n+1)θ2(2n+1)cosθ2sin(2n+1)θ2]+n(n+1)2sinnθsin2θ2.\sum_{k=1}^{n}k^2\cos k\theta =\frac{\sin\frac{n\theta}{2}}{4\sin^3\frac{\theta}{2}}\Biggl[ 2\sin\frac{\theta}{2}\cos\frac{(2n+1)\theta}{2} -(2n+1)\cos\frac{\theta}{2}\sin\frac{(2n+1)\theta}{2}\Biggr] +\frac{n(n+1)}{2}\frac{\sin n\theta}{\sin^2\frac{\theta}{2}}.

Explanation

Solution

We will show that the answer can be written in “closed‐form”. One acceptable answer was

k=1nk2coskθ=sinnθ24sin3θ2[2sinθ2cos(2n+1)θ2(2n+1)cosθ2sin(2n+1)θ2]+n(n+1)2sinnθsin2θ2.\sum_{k=1}^{n}k^2\cos k\theta =\frac{\sin\frac{n\theta}{2}}{4\sin^3\frac{\theta}{2}}\Biggl[ 2\sin\frac{\theta}{2}\cos\frac{(2n+1)\theta}{2} -(2n+1)\cos\frac{\theta}{2}\sin\frac{(2n+1)\theta}{2}\Biggr] +\frac{n(n+1)}{2}\frac{\sin n\theta}{\sin^2\frac{\theta}{2}}\,.

Below is a brief explanation of one way to arrive at such an answer.


Minimal Explanation

  1. Write the Sum in Complex Form:
     Express the cosine as the real part:
      coskθ=(eikθ).  \cos k\theta =\Re\bigl(e^{ik\theta}\bigr).    Thus   k=1nk2coskθ=(k=1nk2eikθ).  \sum_{k=1}^{n}k^2\cos k\theta=\Re\Bigl(\sum_{k=1}^{n} k^2e^{ik\theta}\Bigr).  

  2. Use a Generating Function:
     Recall that for x1|x|\ne1 one may show   k=1nk2xk=x(1+x)(1x)3  xn+1[n2+n1x+2n+1(1x)2+2(1x)3].  \sum_{k=1}^{n}k^2x^k=\frac{x(1+x)}{(1-x)^3}  -\; x^{n+1}\Biggl[\frac{n^2+n}{1-x}+\frac{2n+1}{(1-x)^2}+\frac{2}{(1-x)^3}\Biggr].    Now substitute x=eiθx=e^{i\theta} and take the real part.

  3. Simplify to Trigonometric Functions:
     After some algebra (using the standard identities   1eiθ=2ieiθ/2sinθ2\displaystyle 1-e^{i\theta}=2ie^{i\theta/2}\sin\frac{\theta}{2}  and its consequences) one obtains the answer in terms of sine and cosine functions.

Since there is usually more than one algebraically equivalent form, the answer given above is acceptable.