Solveeit Logo

Question

Question: Differentiate $y = \sqrt[3]{\frac{tanx}{x}}$...

Differentiate

y=tanxx3y = \sqrt[3]{\frac{tanx}{x}}

Answer

y=13(tanxx)23xsec2xtanxx2y'=\frac{1}{3}\left(\frac{\tan x}{x}\right)^{-\frac{2}{3}}\frac{x\sec^2 x-\tan x}{x^2}.

Explanation

Solution

Solution Explanation:
Let

u=tanxxso thaty=u13.u=\frac{\tan x}{x}\quad \text{so that} \quad y=u^{\frac{1}{3}}.

Differentiating using the chain rule:

y=13u23u.y'=\frac{1}{3}u^{-\frac{2}{3}}\, u'.

Differentiate u=tanxxu=\frac{\tan x}{x} via the quotient rule:

u=xsec2xtanxx2.u'=\frac{x\cdot\sec^2 x-\tan x}{x^2}.

Thus, the derivative of yy is:

y=13(tanxx)23xsec2xtanxx2.y'=\frac{1}{3}\left(\frac{\tan x}{x}\right)^{-\frac{2}{3}}\frac{x\sec^2 x-\tan x}{x^2}.