Solveeit Logo

Question

Question: Differentiate $y = \log \left( x + \sqrt{x^2 + a^2} \right)$ w.r.t. $x$....

Differentiate y=log(x+x2+a2)y = \log \left( x + \sqrt{x^2 + a^2} \right) w.r.t. xx.

Answer

1x2+a2\frac{1}{\sqrt{x^2 + a^2}}

Explanation

Solution

Let y=log(x+x2+a2)y = \log \left( x + \sqrt{x^2 + a^2} \right). Assuming log\log is the natural logarithm ln\ln.

Using the chain rule, dydx=1ududx\frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx}, where u=x+x2+a2u = x + \sqrt{x^2 + a^2}.

The derivative of uu is dudx=ddx(x)+ddx(x2+a2)\frac{du}{dx} = \frac{d}{dx}(x) + \frac{d}{dx}(\sqrt{x^2 + a^2}). ddx(x)=1\frac{d}{dx}(x) = 1. For ddx(x2+a2)\frac{d}{dx}(\sqrt{x^2 + a^2}), use the chain rule again: 12x2+a2ddx(x2+a2)=12x2+a2(2x)=xx2+a2\frac{1}{2\sqrt{x^2 + a^2}} \cdot \frac{d}{dx}(x^2 + a^2) = \frac{1}{2\sqrt{x^2 + a^2}} \cdot (2x) = \frac{x}{\sqrt{x^2 + a^2}}.

So, dudx=1+xx2+a2=x2+a2+xx2+a2\frac{du}{dx} = 1 + \frac{x}{\sqrt{x^2 + a^2}} = \frac{\sqrt{x^2 + a^2} + x}{\sqrt{x^2 + a^2}}.

Substituting back: dydx=1x+x2+a2(x+x2+a2x2+a2)=1x2+a2\frac{dy}{dx} = \frac{1}{x + \sqrt{x^2 + a^2}} \cdot \left( \frac{x + \sqrt{x^2 + a^2}}{\sqrt{x^2 + a^2}} \right) = \frac{1}{\sqrt{x^2 + a^2}}.