Question
Question: Differentiate $y = \log \left( x + \sqrt{x^2 + a^2} \right)$ w.r.t. $x$....
Differentiate y=log(x+x2+a2) w.r.t. x.

Answer
x2+a21
Explanation
Solution
Let y=log(x+x2+a2). Assuming log is the natural logarithm ln.
Using the chain rule, dxdy=u1⋅dxdu, where u=x+x2+a2.
The derivative of u is dxdu=dxd(x)+dxd(x2+a2). dxd(x)=1. For dxd(x2+a2), use the chain rule again: 2x2+a21⋅dxd(x2+a2)=2x2+a21⋅(2x)=x2+a2x.
So, dxdu=1+x2+a2x=x2+a2x2+a2+x.
Substituting back: dxdy=x+x2+a21⋅(x2+a2x+x2+a2)=x2+a21.
