Question
Question: Differentiate $x^{\sin x} + (\sin x)^x$ w.r.t. $x$....
Differentiate xsinx+(sinx)x w.r.t. x.

Answer
xsinx(cosxlnx+xsinx)+(sinx)x(ln(sinx)+xcotx)
Explanation
Solution
Let y=xsinx+(sinx)x. Let y1=xsinx. Then lny1=sinxlnx. Differentiating, y11dxdy1=cosxlnx+xsinx. So, dxdy1=xsinx(cosxlnx+xsinx). Let y2=(sinx)x. Then lny2=xln(sinx). Differentiating, y21dxdy2=ln(sinx)+xsinxcosx. So, dxdy2=(sinx)x(ln(sinx)+xcotx). Thus, dxdy=dxdy1+dxdy2=xsinx(cosxlnx+xsinx)+(sinx)x(ln(sinx)+xcotx).
