Solveeit Logo

Question

Question: Differentiate $x^{\sin x} + (\sin x)^x$ w.r.t. $x$....

Differentiate xsinx+(sinx)xx^{\sin x} + (\sin x)^x w.r.t. xx.

Answer

xsinx(cosxlnx+sinxx)+(sinx)x(ln(sinx)+xcotx)x^{\sin x} \left( \cos x \ln x + \frac{\sin x}{x} \right) + (\sin x)^x \left( \ln(\sin x) + x \cot x \right)

Explanation

Solution

Let y=xsinx+(sinx)xy = x^{\sin x} + (\sin x)^x. Let y1=xsinxy_1 = x^{\sin x}. Then lny1=sinxlnx\ln y_1 = \sin x \ln x. Differentiating, 1y1dy1dx=cosxlnx+sinxx\frac{1}{y_1} \frac{dy_1}{dx} = \cos x \ln x + \frac{\sin x}{x}. So, dy1dx=xsinx(cosxlnx+sinxx)\frac{dy_1}{dx} = x^{\sin x} \left( \cos x \ln x + \frac{\sin x}{x} \right). Let y2=(sinx)xy_2 = (\sin x)^x. Then lny2=xln(sinx)\ln y_2 = x \ln(\sin x). Differentiating, 1y2dy2dx=ln(sinx)+xcosxsinx\frac{1}{y_2} \frac{dy_2}{dx} = \ln(\sin x) + x \frac{\cos x}{\sin x}. So, dy2dx=(sinx)x(ln(sinx)+xcotx)\frac{dy_2}{dx} = (\sin x)^x \left( \ln(\sin x) + x \cot x \right). Thus, dydx=dy1dx+dy2dx=xsinx(cosxlnx+sinxx)+(sinx)x(ln(sinx)+xcotx)\frac{dy}{dx} = \frac{dy_1}{dx} + \frac{dy_2}{dx} = x^{\sin x} \left( \cos x \ln x + \frac{\sin x}{x} \right) + (\sin x)^x \left( \ln(\sin x) + x \cot x \right).