Solveeit Logo

Question

Question: Differentiate \[{x^{\sin x}}\],\[x > 0\] with respect to x....

Differentiate xsinx{x^{\sin x}},x>0x > 0 with respect to x.

Explanation

Solution

We use the concept of log in this question. Write the value given equal to a different variable and apply logarithm on both sides of the equation. Use the property of log and break the right hand side. Differentiate using product rule of differentiation.

  • logmn=nlogm\log {m^n} = n\log m
  • logm+logn=logmn\log m + \log n = \log mn
  • Product rule of differentiation:ddx(ab)=addx(b)+bddx(a)\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}(b) + b\dfrac{d}{{dx}}(a)
  • Chain rule of differentiation:ddxg(f(x))=ddxg(f(x))×ddxf(x)\dfrac{d}{{dx}}g\left( {f(x)} \right) = \dfrac{d}{{dx}}g(f(x)) \times \dfrac{d}{{dx}}f(x)

Complete step-by-step answer:
We have to findddx(xsinx)\dfrac{d}{{dx}}({x^{\sin x}})
Here the function is xsinx{x^{\sin x}}
Let us assume the function equal to a variable y.
Lety=xsinxy = {x^{\sin x}} … (1)
Now we apply log function on both sides of the equation.
logy=log(xsinx)\Rightarrow \log y = \log ({x^{\sin x}})
Use the propertylogmn=nlogm\log {m^n} = n\log mwhere m is x and n is x.
logy=sinx(logx)\Rightarrow \log y = \sin x(\log x)
Now differentiate both sides of the equation with respect to x
ddx(logy)=ddx(sinx(logx))\Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {\sin x(\log x)} \right)
Apply chain rule of differentiation in LHs of the equation
Chain rule gives usddxg(f(x))=ddxg(f(x))×ddxf(x)\dfrac{d}{{dx}}g\left( {f(x)} \right) = \dfrac{d}{{dx}}g(f(x)) \times \dfrac{d}{{dx}}f(x).
Hereg(f(x))=log(y),f(x)=yg(f(x)) = \log (y),f(x) = y, then the equation becomes
ddx(logy)×dydx=ddx(sinx(logx))\Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) \times \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\sin x(\log x)} \right)
We know ddxlogx=1x\dfrac{d}{{dx}}\log x = \dfrac{1}{x}
1y×dydx=ddx(sinx(logx))\Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\sin x(\log x)} \right)
Now apply product rule of differentiation in RHS of the equation
Product rule gives usddx(ab)=addx(b)+bddx(a)\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}(b) + b\dfrac{d}{{dx}}(a)
Herea=sinx,b=logxa = \sin x,b = \log x, then the equation becomes
1y×dydx=sinxddxlogx+logxddxsinx\Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \sin x\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}\sin x
Substitute the valuesddxlogx=1x\dfrac{d}{{dx}}\log x = \dfrac{1}{x}andddxsin=cosx\dfrac{d}{{dx}}\sin = \cos xin RHS of the equation
1y×dydx=sinx×1x+logx×cosx\Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \sin x \times \dfrac{1}{x} + \log x \times \cos x
Multiply the terms in RHS of the equation
1y×dydx=sinxx+logx.cosx\Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \dfrac{{\sin x}}{x} + \log x.\cos x
Multiply both sides of the equation by y
y×1y×dydx=y×(sinxx+logx.cosx)\Rightarrow y \times \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = y \times \left( {\dfrac{{\sin x}}{x} + \log x.\cos x} \right)
Cancel same function from numerator and denominator in LHS of the equation
dydx=y(sinxx+logx.cosx)\Rightarrow \dfrac{{dy}}{{dx}} = y\left( {\dfrac{{\sin x}}{x} + \log x.\cos x} \right)
Substitute the value of y=xsinxy = {x^{\sin x}}from equation (1)
ddx(xsinx)=xsinx(sinxx+logx.cosx)\Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x}}\left( {\dfrac{{\sin x}}{x} + \log x.\cos x} \right)
Take LCM in right side of the equation
ddx(xsinx)=xsinx(sinx+xlogxcosxx)\Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x}}\left( {\dfrac{{\sin x + x\log x\cos x}}{x}} \right)
Since we can write 1x=x1\dfrac{1}{x} = {x^{ - 1}}
ddx(xsinx)=xsinx.x1(sinx+xlogxcosx)\Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x}}.{x^{ - 1}}\left( {\sin x + x\log x\cos x} \right)
We have x as same base so we can add the powers
ddx(xsinx)=xsinx1(sinx+xlogxcosx)\Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x - 1}}\left( {\sin x + x\log x\cos x} \right)

\therefore Differentiation of xsinx{x^{\sin x}}with respect to x is xsinx1(sinx+xlogxcosx){x^{\sin x - 1}}\left( {\sin x + x\log x\cos x} \right)

Note:
Students many times make the mistake of writing the final answer of differentiation without shifting or removing the value of y from the left hand side of the equation. Keep in mind we only need the value of differentiation of y with respect to x i.e. differentiation of the given function with respect to x.