Solveeit Logo

Question

Question: Differentiate \(x{e^{{x^2}}}\) ....

Differentiate xex2x{e^{{x^2}}} .

Explanation

Solution

Differentiation is a process to find the rate of change of a function with respect to one of it’s variables. If xx is a variable and yy represents another variable, then the rate of change of yy w.r.t. xx is given as dydx\dfrac{{dy}}{{dx}} . The general expression for the derivative of a function is represented by, f(x)=dydx, where f(x) is any function.f'\left( x \right) = \dfrac{{dy}}{{dx}},{\text{ where }}f\left( x \right){\text{ is any function}}{\text{.}} To solve this question , we should be familiar with some standard derivatives and fundamental rules of differentiation.

Complete step by step answer:
Let y=xex2 ......(1)y = x{e^{{x^2}}}{\text{ }}......\left( 1 \right)
Differentiate the above equation w.r.t. xx , we get;
dydx=ddx(x×ex2)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {x \times {e^{{x^2}}}} \right)
By the product rule of differentiation, we know that;
ddx(uv)=vdudx+udvdx ......(2)\Rightarrow \dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}}{\text{ }}......\left( 2 \right)
Here , u=x and v=ex2u = x{\text{ and }}v = {e^{{x^2}}}
Now, let us calculate dudx\dfrac{{du}}{{dx}} .
dudx=ddx(x)\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( x \right)
dudx=1 ......(3)\Rightarrow \dfrac{{du}}{{dx}} = 1{\text{ }}......\left( 3 \right)
Similarly, the value of dvdx\dfrac{{dv}}{{dx}} will be;
dvdx=ddx(ex2)\Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{d}{{dx}}\left( {{e^{{x^2}}}} \right)
By chain rule of differentiation, which is used to calculate the derivative of a composite function or we can say a function within a function. For example: sin(x2)\sin \left( {{x^2}} \right) is a composite function. So first we will calculate the derivative of sinx\sin x w.r.t. xx and then as we can notice that x2{x^2} is also differentiable w.r.t. xx . Therefore, we will also calculate it’s derivative which will be 2x2x . So, ddxsin((x2))=2xcosx\dfrac{d}{{dx}}\sin \left( {\left( {{x^2}} \right)} \right) = 2x\cos x.
We know that ddx(ex)=ex\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x} and also applying the chain rule of differentiation here;
dvdx=ex2×2x ......(4)\Rightarrow \dfrac{{dv}}{{dx}} = {e^{{x^2}}} \times 2x{\text{ }}......\left( 4 \right)
Now put the values of dudx and dvdx \dfrac{{du}}{{dx}}{\text{ and }}\dfrac{{dv}}{{dx}}{\text{ }} from equation (3) and (4)\left( 3 \right){\text{ and }}\left( 4 \right) in equation (2)\left( 2 \right), we get;
ddx(uv)=(ex2×1)+(x×ex2×2x) \Rightarrow \dfrac{d}{{dx}}\left( {uv} \right) = \left( {{e^{{x^2}}} \times 1} \right) + \left( {x \times {e^{{x^2}}} \times 2x} \right){\text{ }}
Simplifying further, we get;
ddx(uv)=ex2 + (2x2×ex2) \Rightarrow \dfrac{d}{{dx}}\left( {uv} \right) = {e^{{x^2}}}{\text{ + }}\left( {{\text{2}}{x^2} \times {e^{{x^2}}}} \right){\text{ }}
Taking ex2{e^{{x^2}}} outside the equation, we get;
ddx(uv)=ex2(1+2x2) \Rightarrow \dfrac{d}{{dx}}\left( {uv} \right) = {e^{{x^2}}}\left( {1 + 2{x^2}} \right){\text{ }}
Therefore, dydx=ex2(1+2x2)\dfrac{{dy}}{{dx}} = {e^{{x^2}}}\left( {1 + 2{x^2}} \right)
Therefore the correct answer for this question is the differentiation of xex2 is ex2(1+2x2)x{e^{{x^2}}}{\text{ is }}{{\text{e}}^{{x^2}}}\left( {1 + 2{x^2}} \right) .
The standard derivatives of some important functions are given below;
(1)ddx(xn)=nxn1\left( 1 \right)\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} . (2)ddx(ex)=ex\left( 2 \right)\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x} . (3)ddx(logex)=1x\left( 3 \right)\dfrac{d}{{dx}}\left( {{{\log }_e}x} \right) = \dfrac{1}{x} . (4)ddx(sinx)=cosx\left( 4 \right)\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x. . (5)ddx(tanx)=sec2x\left( 5 \right)\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x . (6)ddx(secx)=secxtanx\left( 6 \right)\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x (7)ddx(cotx)=cosec2x\left( 7 \right)\dfrac{d}{{dx}}\left( {\cot x} \right) = - \cos e{c^2}x . . (8)ddx(cosecx)=cosecxtanx\left( 8 \right)\dfrac{d}{{dx}}\left( {\cos ecx} \right) = - \cos ecx\tan x .

Note: There are some fundamental rules for differentiation, which are stated as follows: (1)\left( 1 \right) Differentiation of a constant is always zero, i.e. ddx(constant)=0\dfrac{d}{{dx}}\left( {{\text{constant}}} \right) = 0 . (2)\left( 2 \right) Differentiation of a constant multiplied with a function is calculated as constant times differentiation of that function. For example: ddx(3sinx)=3ddx(sinx)\dfrac{d}{{dx}}\left( {3\sin x} \right) = 3\dfrac{d}{{dx}}\left( {\sin x} \right) which gives the result as 3cosx3\cos x . (3)\left( 3 \right)The product rule of differentiation is given as ddx[f(x)g(x)]=ddxf(x)×g(x)+f(x)×ddxg(x)\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = \dfrac{d}{{dx}}f\left( x \right) \times g\left( x \right) + f\left( x \right) \times \dfrac{d}{{dx}}g\left( x \right) . (4)\left( 4 \right) The division rule of differentiation is given by \dfrac{d}{{dx}}\left\\{ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right\\} = \dfrac{{g\left( x \right) \times \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) - f\left( x \right) \times \dfrac{d}{{dx}}\left( {g\left( x \right)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}} .