Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differentiate (x55x+8)(x3+7x+9)(x^5-5x+8)(x^3+7x+9) in three ways mentioned below
(i) By using product rule
(ii) By expanding the product to obtain a single polynomial.
(iii) By logarithmic differentiation.
Do they all give the same answer?

Answer

(i)Let y=(x55x+8)(x3+7x+9)y=(x^5-5x+8)(x^3+7x+9)
let x55x+8=ux^5-5x+8=u and x3+7x+9=vx^3+7x+9=v
y=uv∴y=uv
dydx=dudx.v+u.dvdx⇒\frac{dy}{dx}=\frac{du}{dx}.v+u.\frac{dv}{dx} [by product rule]
dydx=ddx(x55x+8).(x3+7x+9)+(x55x+8).ddx(x3+7x+9)⇒\frac{dy}{dx}=\frac{d}{dx}(x^5-5x+8).(x^3+7x+9)+(x^5-5x+8).\frac{d}{dx}(x^3+7x+9)
dydx=(2x5)(x3+7x+9)+(x55x+8)(3x2+7)⇒\frac{dy}{dx}=(2x-5)(x^3+7x+9)+(x^5-5x+8)(3x^2+7)
dydx=2x(x3+7x+9)5(x3+7x+9)+x2(3x2+7)5x(3x2+7)+8(3x2+7)⇒\frac{dy}{dx}=2x(x^3+7x+9)-5(x^3+7x+9)+x^2(3x^2+7)-5x(3x^2+7)+8(3x^2+7)
dydx=(2x4+14x2+18x)5x335x45+(3x4+7x2)15x335x+24x2+56⇒\frac{dy}{dx}=(2x^4+14x^2+18x)-5x^3-35x-45+(3x^4+7x^2)-15x^3-35x+24x^2+56
dydx=5x420x3+45x252x+11∴\frac{dy}{dx}=5x^4-20x^3+45x^2-52x+11


(ii)y=(x55x+8)(x3+7x+9)y=(x^5-5x+8)(x^3+7x+9)
=x2(x3+7x+9)5x(x3+7x+9)+8(x3+7x+9)=x^2(x^3+7x+9)-5x(x^3+7x+9)+8(x^3+7x+9)
=x5+7x3+9x25x435x245x+8x3+56x+72=x^5+7x^3+9x^2-5x^4-35x^2-45x+8x^3+56x+72
=x55x4+15x326x2+11x+72=x^5-5x^4+15x^3-26x^2+11x+72
dydx=ddx(x55x4+15x326x2+11x+72)∴\frac{dy}{dx}=\frac{d}{dx}(x^5-5x^4+15x^3-26x^2+11x+72)
=ddx(x5)5ddx(x4)+15ddx(x3)26ddx(x2)+11ddx(x)+ddx(72)=\frac{d}{dx}(x^5)-5\frac{d}{dx}(x^4)+15\frac{d}{dx}(x^3)-26\frac{d}{dx}(x^2)+11\frac{d}{dx}(x)+\frac{d}{dx}(72)
=5x45×4x3+15×3x226×2x+11×1+0=5x^4-5\times4x^3+15\times3x^2-26\times2x+11\times1+0
=5x420x3+45x252x+11=5x^4-20x^3+45x^2-52x+11


(iii)y=(x25x+8)(x3+7x+9)y=(x^2-5x+8)(x^3+7x+9)
Taking logarithm on both the sides,we obtain
logy=log(x25x+8)+log(x3+7x+9)logy=log(x^2-5x+8)+log(x^3+7x+9)
Differentiating both sides with respect to xx,we obtain
1ydydx=ddxlog(x25x+8)+ddxlog(x3+7x+9)\frac{1}{y}\frac{dy}{dx}=\frac{d}{dx}log(x^2-5x+8)+\frac{d}{dx}log(x^3+7x+9)
1ydydx=1x55x+8.ddx(x25x+8)+1x3+7x+9.ddx(x3+7x+9)⇒\frac{1}{y}\frac{dy}{dx}=\frac{1}{x^5-5x+8}.\frac{d}{dx}(x^2-5x+8)+\frac{1}{x^3+7x+9}.\frac{d}{dx}(x^3+7x+9)
dydx=y[1x25x+8.(2x5)+1x3+7x+9.(3x2+7)]⇒\frac{dy}{dx}=y[\frac{1}{x^2-5x+8}.(2x-5)+\frac{1}{x^3+7x+9}.(3x^2+7)]
dydx=(x25x+8)(x3+7x+9)[2x5(x25x+8)+3x2+7(x3+7x+9)]⇒\frac{dy}{dx}=(x^2-5x+8)(x^3+7x+9)[\frac{2x-5}{(x^2-5x+8)}+\frac{3x^2+7}{(x^3+7x+9)}]
dydx=(x25x+8)(x3+7x+9)[(2x5)(x3+7x+9)+(3x2+7)(x25x+8)(x25x+8)(x3+7x+9)]⇒\frac{dy}{dx}=(x^2-5x+8)(x^3+7x+9)[\frac{(2x-5)(x^3+7x+9)+(3x^2+7)(x^2-5x+8)}{(x^2-5x+8)(x^3+7x+9)}]
dydx=2x(x3+7x+9)5(x3+7x+9)+3x2(x25x+8)+7(x25x+8)⇒\frac{dy}{dx}=2x(x^3+7x+9)-5(x^3+7x+9)+3x^2(x^2-5x+8)+7(x^2-5x+8)
dydx=(2x4+14x2+18x)5x335x45+(3x415x3+24x2)+(7x235x+56)⇒\frac{dy}{dx}=(2x^4+14x^2+18x)-5x^3-35x-45+(3x^4-15x^3+24x^2)+(7x^2-35x+56)
dydx=5x420x3+45x252x+11⇒\frac{dy}{dx}=5x^4-20x^3+45x^2-52x+11
From the above three observations, it can be concluded that all the results of dy/dx are same