Question
Mathematics Question on Continuity and differentiability
Differentiate (x5−5x+8)(x3+7x+9) in three ways mentioned below
(i) By using product rule
(ii) By expanding the product to obtain a single polynomial.
(iii) By logarithmic differentiation.
Do they all give the same answer?
(i)Let y=(x5−5x+8)(x3+7x+9)
let x5−5x+8=u and x3+7x+9=v
∴y=uv
⇒dxdy=dxdu.v+u.dxdv [by product rule]
⇒dxdy=dxd(x5−5x+8).(x3+7x+9)+(x5−5x+8).dxd(x3+7x+9)
⇒dxdy=(2x−5)(x3+7x+9)+(x5−5x+8)(3x2+7)
⇒dxdy=2x(x3+7x+9)−5(x3+7x+9)+x2(3x2+7)−5x(3x2+7)+8(3x2+7)
⇒dxdy=(2x4+14x2+18x)−5x3−35x−45+(3x4+7x2)−15x3−35x+24x2+56
∴dxdy=5x4−20x3+45x2−52x+11
(ii)y=(x5−5x+8)(x3+7x+9)
=x2(x3+7x+9)−5x(x3+7x+9)+8(x3+7x+9)
=x5+7x3+9x2−5x4−35x2−45x+8x3+56x+72
=x5−5x4+15x3−26x2+11x+72
∴dxdy=dxd(x5−5x4+15x3−26x2+11x+72)
=dxd(x5)−5dxd(x4)+15dxd(x3)−26dxd(x2)+11dxd(x)+dxd(72)
=5x4−5×4x3+15×3x2−26×2x+11×1+0
=5x4−20x3+45x2−52x+11
(iii)y=(x2−5x+8)(x3+7x+9)
Taking logarithm on both the sides,we obtain
logy=log(x2−5x+8)+log(x3+7x+9)
Differentiating both sides with respect to x,we obtain
y1dxdy=dxdlog(x2−5x+8)+dxdlog(x3+7x+9)
⇒y1dxdy=x5−5x+81.dxd(x2−5x+8)+x3+7x+91.dxd(x3+7x+9)
⇒dxdy=y[x2−5x+81.(2x−5)+x3+7x+91.(3x2+7)]
⇒dxdy=(x2−5x+8)(x3+7x+9)[(x2−5x+8)2x−5+(x3+7x+9)3x2+7]
⇒dxdy=(x2−5x+8)(x3+7x+9)[(x2−5x+8)(x3+7x+9)(2x−5)(x3+7x+9)+(3x2+7)(x2−5x+8)]
⇒dxdy=2x(x3+7x+9)−5(x3+7x+9)+3x2(x2−5x+8)+7(x2−5x+8)
⇒dxdy=(2x4+14x2+18x)−5x3−35x−45+(3x4−15x3+24x2)+(7x2−35x+56)
⇒dxdy=5x4−20x3+45x2−52x+11
From the above three observations, it can be concluded that all the results of dy/dx are same