Solveeit Logo

Question

Question: Differentiate with respective to x: \[\log \left( {\sec x\,\, + \,\,\tan x} \right)\]...

Differentiate with respective to x:
log(secx+tanx)\log \left( {\sec x\,\, + \,\,\tan x} \right)

Explanation

Solution

We will suppose to the given value v = log (sec x + tan x)v{\text{ }} = {\text{ }}log{\text{ }}\left( {sec{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x} \right). Further taking log both sides, then differentiate the given value with respect to x.
ddx(logx)=1x\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}

Complete step by step solution:-
let v = log (sec x + tan x)v{\text{ }} = {\text{ }}log{\text{ }}\left( {sec{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x} \right)
Differentiate both side with respect to x, we will get
ddxv=ddx(log1sec+tanx) ddx=1secx+tax×ddx(secx+tanx) =1(secx+tanx)×secx.tanx+sec2x dvdx=1secx+tanx(secxtanx+sec2x) dvdx=1secx+tanxsecx(tanx+secx) dvdx=1(secx+tanx)secx(secx+tanx) dvdx=secx  \dfrac{d}{{dx}}v = \dfrac{d}{{dx}}\left( {\log 1\sec + \tan x} \right) \\\ \dfrac{d}{{dx}} = \dfrac{1}{{\sec x + tax}} \times \dfrac{d}{{dx}}\left( {\sec x + \tan x} \right) \\\ = \dfrac{1}{{\left( {\sec x + \tan x} \right)}} \times \sec x.\tan x + {\sec ^2}x \\\ \dfrac{{dv}}{{dx}} = \dfrac{1}{{\sec x + \tan x}}\left( {\sec x - \tan x + {{\sec }^2}x} \right) \\\ \dfrac{{dv}}{{dx}} = \dfrac{1}{{\sec x + \tan x}}\sec x\left( {\tan x + \sec x} \right) \\\ \dfrac{{dv}}{{dx}} = \dfrac{1}{{\left( {\sec x + \tan x} \right)}}\sec x\left( {\sec x + \tan x} \right) \\\ \dfrac{{dv}}{{dx}} = \sec x \\\

Additional Information: Differentiation comes down to figuring out how one variable changes with respect to another variable. Some differentiation rule are:
(i) The constant rule: for any fixed real number cc.\dfrac{d}{{dx}}\left\\{ {c.f(x)} \right\\} = c.\dfrac{d}{{dx}}\left\\{ {f(x)} \right\\}
(ii) The power rule: \dfrac{d}{{dx}}\left\\{ {{x^n}} \right\\} = n{x^{n - 1}}

Note: We have to be careful to use the appropriate formula of logarithm in accordance to the problem given.Some of them are:
(i)log(a)m=mloga\left( i \right)\log {(a)^m} = m\log a
(ii)loga.logb=log(a+3)\left( {ii} \right)\log a.\log b = \log \left( {a + 3} \right)

(iii)log(ab)=logalogb (iv)log1=0 (v)loge=1  \left( {iii} \right)\log \left( {\dfrac{a}{b}} \right) = \log a - \log b \\\ \left( {iv} \right)\log 1 = 0 \\\ \left( v \right)\log e = 1 \\\