Solveeit Logo

Question

Question: Differentiate with respect to \(x:\sin \left( m{{\sin }^{-1}}x \right)\) (a) \(\cos \left( m{{\cos...

Differentiate with respect to x:sin(msin1x)x:\sin \left( m{{\sin }^{-1}}x \right)
(a) cos(mcos1x)\cos \left( m{{\cos }^{-1}}x \right)
(b) sin(msin1x)\sin \left( m{{\sin }^{-1}}x \right)
(c) m2sinx{{m}^{2}}\sin x
(d) none of these

Explanation

Solution

Hint: To solve this question, we can use chain rule since we have to differentiate a composite function of the form f(g(x))f\left( g\left( x \right) \right).

In this question, we have to differentiate sin(msin1x)\sin \left( m{{\sin }^{-1}}x \right) with respect to
xx. Before proceeding with the question, we must know the chain rule. If we have to differentiate a function which is the form of f(g(x))f\left( g\left( x \right) \right), we will use chain rule. We can differentiate a function which is the form of f(g(x))f\left( g\left( x \right) \right) using chain rule as shown below,
d(f(g(x)))dx=d(f(g(x)))d(g(x))×d(g(x))dx.............(1)\dfrac{d\left( f\left( g\left( x \right) \right) \right)}{dx}=\dfrac{d\left( f\left( g\left( x \right) \right) \right)}{d\left( g\left( x \right) \right)}\times \dfrac{d\left( g\left( x \right) \right)}{dx}.............\left( 1 \right)
In the question, since we are given a function f(g(x))=sin(msin1x)f\left( g\left( x \right) \right)=\sin \left( m{{\sin }^{- 1}}x \right). So, we can find out g(x)=msin1xg\left( x \right)=m{{\sin }^{-1}}x. Substituting f(g(x))=sin(msin1x)f\left( g\left( x \right) \right)=\sin \left( m{{\sin }^{-1}}x \right) and g(x)=msin1xg\left( x \right)=m{{\sin }^{-1}}x in equation
(1)\left( 1 \right), we get,

\right) \right)}{d\left( m{{\sin }^{-1}}x \right)}\times \dfrac{d\left( m{{\sin }^{-1}}x \right)}{dx}.............\left( 2 \right)$$ Since we are differentiating $\sin \left( m{{\sin }^{-1}}x \right)$ with respect to $m{{\sin }^{-1}}x$, we get, $$\dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{d\left( m{{\sin }^{-1}}x \right)}=\cos \left( m{{\sin }^{-1}}x \right)$$, $\because \dfrac{d\sin x}{dx}=\cos x$ Also, we have a formula which gives us the derivative of ${{\sin }^{-1}}x$ with respect to $x$, $\dfrac{d{{\sin }^{-1}}x}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}..........\left( 4 \right)$ Since $m$is a constant, we can take $m$out of the derivative in $\dfrac{d\left( m{{\sin }^{-1}}x \right)}{dx}$ and hence, we can write $\dfrac{d\left( m{{\sin }^{-1}}x \right)}{dx}$ as, $$\dfrac{d\left( m{{\sin }^{-1}}x \right)}{dx}=m\dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}$$ Substituting $\dfrac{d{{\sin }^{-1}}x}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$ from equation $\left( 4 \right)$ in the above equation to obtain the derivative of $m{{\sin }^{-1}}x$ with respect to $x$, we get, $$\dfrac{d\left( m{{\sin }^{-1}}x \right)}{dx}=\dfrac{m}{\sqrt{1-{{x}^{2}}}}...........\left( 5 \right)$$ Substituting $$\dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{d\left( m{{\sin }^{-1}}x \right)}=\cos \left( m{{\sin }^{-1}}x \right)$$ from equation $\left( 3 \right)$ and $$\dfrac{d\left( m{{\sin }^{-1}}x \right)}{dx}=\dfrac{m}{\sqrt{1-{{x}^{2}}}}$$ from equation $\left( 5 \right)$ in equation $\left( 2 \right)$, we get, $$\begin{aligned} & \dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{dx}=\cos \left( m{{\sin }^{-1}}x \right)\times \dfrac{m}{\sqrt{1-{{x}^{2}}}} \\\ & \Rightarrow \dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{dx}=\dfrac{m\cos \left( m{{\sin }^{-1}}x \right)}{\sqrt{1-{{x}^{2}}}} \\\ \end{aligned}$$ None of the options are matching with the answer that is $$\dfrac{m\cos \left( m{{\sin }^{-1}}x \right)}{\sqrt{1-{{x}^{2}}}}$$. Therefore the correct answer is option (d). Note: There is a possibility of committing a mistake while writing the derivative of $\sin x$ or $\cos x$. There is always a confusion in writing the negative sign. One may write the derivative of $\sin x$ as $-\cos x$ instead of $\cos x$. Also, one may write the derivative of $\cos x$ as $\sin x$ instead of $- \sin x$. So, in order to avoid such mistakes, one must remember them thoroughly.